Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Storm Water Management Plan
REFLECTIONS AT LAKE RILEY Chanhassen, Minnesota January 28, 2011 Property Owner: Lennar 935 East Wayzata Blvd. Wayzata, MN 55391 Consultant to Project Owner: Pioneer Engineering, P.A Pl NEER 2422 Enterprise Drive engineering Mendota Heights, Minnesota 55120 ' I. Introduction The following is a hydrology summary for the construction of a 66 unit single family home ' development to be called Reflections at Lake Riley. The site is located in the north of the intersection of Lyman Boulevard and Springfield Drive in Chanhassen, Minnesota. I H. Existing Site Conditions The site consists of 50 acres of open field with high grasses and several stands of trees ring the low lying wetland and a surface channel, constructed with STH 212 western edge, turning midway in the Site to enter a large wetland in the south eastern corner. An old storage structure is located on the north boundary and is surrounded with abandoned farming machinery and construction debris. There are two major drainage areas and one minor area on the site The first major drainage area covers approximately 30.3 acres and drains to a large, 10 acre wetland (DNR- 213W), in the south east corner of the Site. The second drainage area, 10.0 acres, drains to a channel that drains the storm water basins from the STH 212 and 101 intersection along the west property line. The channel drains to wetland 213W through a large 48" pipe. There is a small, less then one acre, area that drains to STH 212 through a culvert under the sound wall in the north central portion of the site. A review of the USDA Natural Resources Conservation Services Soils Survey; maps the site ' with two major groups; the Kilkenny- Lester association and Rasset- Lester - Kilkenny complex. Both of these groups are classified as clay according to the Unified Soil Classification System and are associated with moraines and the Minnesota River Flood Plain. This information was ' confirmed by soil borings performed by Braun Interetec and contained their Geotechnical Evaluation Report dated December 2, 2010. The report can be found in Appendix D. ' III. Proposed Site Conditions The proposed development consists of a 66 unit single family subdivision with the extension of ' Springfield Drive off of Lyman Boulevard on the south and Lake Riley Road on the east intersecting in the central portion of the site. Two Cul -de -Sacs off of these roads completes the site. 1 1 The drainage under the proposed conditions was designed to mirror, as closely as possible, the existing drainage pattern. The drainage pattern under the proposed condition drains 9.58 acres, versus 10 acres under existing, to the MNDOT drainage channel and 29.10 acres, versus 30.3 acres under existing, to Wetland 10-213W. the remaining 1.61 acres drains to the exsiting storm sewer provided by the North bay development on the east side. Three Stormwater basins are proposed to treat the stormwater for the development. Basin 200 treats water before discharging to the MNDOT drainage channel. Basin 300 drains to Basin 100 and treat stormwater before discharge to Wetland 10-213W I IV. Design Considerations The City of Inver Grove Heights Stormwater Management Ordinance requires all new developments to meet quality, flow rate requirements. These requirements are summarizes as follows: 1. Rate Control - The proposed flow rate from the proposed development shall not exceed the flow rate of the existing drainage areas for the two, ten and 100 year storm events. ' 2. Water Quality- Best management practices are required to reduce the Total Suspended Solids (TSS) by 80% and Total Phosphorous by 60 %. ' 3. Storm Sewer Conveyance System— Designed to handle a 10 Year Storm Event. ' V. Results Topographic information was field located by Pioneer Engineering. The basins were sized to meet NURP standards with the use of PondSIZ. HydroCAD, a SCS TR -20 based computer model was utilized for the hydrology study. P8 a stormwater quality model was used to quantify the removal efficiency of BMP's used in the design. The following table is a comparison of the required wet volume required by NURP Standards and the size provided for the Site. Wet Volume Requirement Basin Volume Required Ac *Ft Volume Provided Ac *Ft 100 1.08 2.65 200 0.23 0.59 300 0.43 0.91 The following table is a summary of the results of the various HydroCAD models. The individual model results, drainage maps and ancillary supporting documents are attached for your review. DrainaLye to MNDOT Channel Storm Event Flow Rate (cfs) Existing Proposed 2 -Year 9.19 7.32 10 -Year 23.38 17.90 100 -Year 11 44.72 33.58 i vrainaLwe to Wetland lu -L13w Storm Event Flow Rate (cfs) Existing Proposed 2 -Year 51.81 44.58 10 -Year 105.58 78.55 100 -Year 191.4 127.82 The flow rate for all design storm events are reduced from the existing condition for both the MNDOT Channel and Wetland 10 -213W. The results from the HydroCAD model can be found in Appendix A. To evaluate 80% TSS reduction and 60 %TP criteria a P8 model was created. Local climate data for the 20 year lifetime design (1974 - 1994), sequence were used to compile the results. The stromwater system provides a relative 82.29% TSS and 65.21% TP removal for the design lifetime. Results from the P8 model can be found in Appendix B. The design for the Storm Sewer Conveyance system can be found in Appendix C. Additional plans and supporting documentation can be found in Appendix D. fl Appendix A Hydrocad Model CO 0 N N 1-0� � c tea` N N m F U LD C7 U M o U`C dc �U 02 (7 U C C = xW ` N z LL Old �j N [ m�a= G O O 1- n I OC (a C, mM LO c n U E it W W II Q U U (D N N C W R 3 0 C W E . , E° o O p/r• o O � .�rn� Arno.- m O_ O I� U) CD In D r r N N N J U f- v � O L � t O n o °' u O � -a +r _ R `m m O L { Q O O c co E N . 0 = o � m o F U a L = U) E � > E 3 'c � w H E a. t V) o w � U O � W � E ^, N U E U - 611 C = N L W N U ry C cl) N o F' Y .p V1 N II � .0 cc x m N O O O c c n 3 � T U C7 x O U'U c 0 a U If N L � L O � oa o m � II `m O L .0 l` y9 N t .r °o m m rn Z t ° U V o J D � W a 3 3 c/) CO Olul O W m x ca a m " .. > E UCC)II w W Q y N N F' C O m o c 3 0_ c U L o U cc x H II > O Z U z- N E O 1- -rU W . Q W Q� U O E x W U_ O)� IId E O0 3 � LL vi N c O N II II 2 - 3 p P 0 o O W L �Q m O y U rn O 2� O U W C 0 o ° O oE� CD C; 1� N 0 m N n F- N (n N c U ��ONm 7 In M J II Cl) (00 O W O 00 c- .�N I� O 00 r co fh I C O O O xr f6 c a) ya wm� N L O m C 2 W C m 1.g - 1. : m N O L V y L o _ � a o w o u tQ II J J Q O L o � O O ° o m � o d C O`O v O 0 vTpi N CO J? C � O m > mQ U (a _E ~ N Tx �+ c I W 2 o = E N O OO E N II II ) y y t ao po T p rn Em d N a) N W O O_ N X ° Lu II U L r O0 Q �N O p p c c a rax If MI-' m F U LD C7 U M o U`C dc �U 02 (7 U C C = xW ` N z LL Old �j N [ m�a= G O O 1- n I OC (a C, mM LO c n U E it W W II Q U U (D N N C W R 3 0 C W E . , E° o O p/r• o O � .�rn� Arno.- m O_ O I� U) CD In D r r N N N J U f- v � O L � t O n o °' u O � -a +r _ R `m m O L { Q O O c co E N . 0 = o � m o F U a L = U) E � > E 3 'c � w H E a. t V) o w � U O � W � E ^, N U E U - 611 C = N L W N U ry C cl) N o F' Y .p V1 N II � .0 cc x m N O O O c c n 3 � T U C7 x O U'U c 0 a U If N L � L O � oa o m � II `m O L .0 l` y9 N t .r °o m m rn Z t ° U V o J D � W a 3 3 c/) CO Olul O W m x ca a m " .. > E UCC)II w W Q y N N F' C O m o c 3 0_ c U L o U cc x H II > O Z U z- N E O 1- -rU W . Q W Q� U O E x W U_ O)� IId E O0 3 � LL vi N c O N II II 2 - 3 p P 0 o O W L �Q m O y U rn O 2� O U W C 0 o ° O oE� CD C; 1� N 0 m N n F- N (n N c U ��ONm 7 In M J II Cl) (00 O W O 00 c- .�N I� O 00 r co fh I C O O O xr f6 c a) ya wm� N L O m C 2 W C m 1.g - 1. : C O 0 vTpi C � O m N r�s J ` t mow 05 I''� v m o m m mo m N O x - C =b ^� y— 'nm < CD it mmomD -4 < m 7 o m» x� =to 0 ID off � m 3 �T m, o mm� D c`2 o000, m 0 m 0 0 Z F D C D m <O o M 000C, <,v m m < O II II .ml ._. C N CD aD v II II II II co V < 9x T 7 OCn J' O c c0 cD cD CL ommx rnN_ �' D m W N n n N N OD c N V N W O O W O '� m D II II O O N 3 � m n n n N !%r N N SD =r @@ �°—� con j m = ww sQ N cD CL O W N c O Cn 3 O 7 N _ p Cl) O m O S LO N n m ^ ID 0 O O i:D A 00 C N N 0 r W II II O), n Q7 n m a n F0 0 0 0 D fn SS— 3 @o 0 N T 0 we . > , "O =r y io m N cn m "O d w fr O) S O O? � fn n v 0 m m 0 C (A W m N m m N -w m N 0 0? A m N 0 (D < m0 "•fD C @ ma W 0 0 0? O w c0 O C C O 'O = m 7 n m W O O C C C C W ° Nm O `�� < - 0ny yO wO ....A mQ I mmy 0 v cD °tD II II O II D m m C y N �p II 11 Q. �m� ° 3 v ° oo g m S VI ? O 0 N N d 0 O m >]. . < { < O O= W N .mi �O 0)O N �O O p II O. O O O' 6 fr NfT7 v m ONE 00� II OD m Ap 000 II 0 O OI w �j OD A S M O D N 3 CL O) �I OD .nr S D cn C CD co r � m OD w 0 r' O N (D ? N e m n cm N O r m O < C) V m ° 11 CD ^ n° m O O 0 N 0 3 3 0 O s � w1 r CD V (n I i0 S'6 .m • O i O 0 o i O 3i CD N O i DI v m m m H 'O m ; rnrnrn N O) N (D m ' i O O O ( D 000 � c Cn o ! A W N C V OP y V O O y D O O O A O O r N D 0 0 m co ,4 i A n co c n CO v, p N -� -r. V O � y m O N A O moo m c i ca E C C to CD - t 3 v W d V OO cc E; N ' co 00 -N D N d r w m CL v CD 0 7<1 CD n 0 v m � O � T O � m m m N m 0 0 m � N N II II O O no m m n n C C m m D O_ 0 j 0 0 c m � O CD X n N m O F 3 CD t a m a N N � cU v. >v d N N I I N IV O OJ � O �o v N � i iam X im M 7 3 cp fC ) DO ) )O D3 D"6 � d .L J 7 C Jm r � `c a N A Z N N � v 7 N d CL 3 z 7 po II I N N O 1 C N N 0 a) N N r r C C H L Q E? `m a` } 12 a� l � N N y 0 L d o O C: cc v Q � U J a n L N 0 (n r N O rn C a = o 0) E 0 o � Q n N 0 Y U ) m N N CO Q L �_ � Q E U U) w ~ C 7 O L U T = O U) = Q 2 11 CD N E N O OO E 7 = O ;6 001 fn VI U L C N '!Q 0 > 0o M E w O d y C 14 5 N O N d M} K o® II uL r N Q as Q N N o C a) o 0 o U U) U x 0 C9 ( mc c � U � (�cf) c i W R O LL O LL I N � 0 O a t co EL 7 O M tt a n n n 0 0 n 01 01 O Sri to M Cl) U7 c Cl N 1 0 1 � m N d Z" N O Q N d M V C o c m j O O rn 0 0 �m0 O O _ O n U �ornnn �" m M N N C J a � U H c i� C a C L a7 II � L O �! N O 7 O II w � l6 (6 W m C r L Q 7 00 i C 6 E N O1 0 o 0 I- U E d s E R 3 co E Q > E 7 'c I E y t vi m ^ = N 0 (a N E E Lw = c V E W m m Ew H ED N ca N O � O N2 v II cL 0 O O c c o. � � H O N M L R N 7 � o aJ L 0 M co O � o U = C N m c m y rn U E 0 ° x Q- Z L 0 0 0 o u1 m (7 U U 7 E 0. - l6 ca ca 0 U U U) E U d 1O U Uv�dQma) m w H Utn N O m Co m 3 p c U L U Z y y j� C U « O N p .� Q N CD U N E `" x N ' LL LL rnCD Eo mw � 3 /�� O 1 N 0- O CO 0 0 y t C N 0 D 0 co IL C; �° 0 Ex O � U) M O 0 n N t6 0Cl) n W n LL} o C. 0iw o ° to c U m LoN r V �m a J II (n (D 00 OO 00 QN r - ;: 0 r- 0'1 c'1 c a ? _ E c 0 o_ � � H N acm c . H L Q E? 12 a� R U� � T C m W C: cc C O O Y' a 61 3 a¢ p a = m Q :Y L � •. ' x 7 O �. T- cu O Q 2 �tn� O� 0 m o m mo <@" CD m IC O O �►v >� < mmMOD < # C 39 x c03.� B =to O 3 o� N mro� F O Z m . CD mr 2£�y ° °�� D(o CD m <O 0002 (moo 000o F <6 (D wwD � pam II < O II II m II R° .3T m m m m p II II II r 3 N m ( N ® .6 x N_ m 11 �C to CD CD m . v m N m m�< 3 ( .mi W m On CD Q 7 0— 0 (n o n N �_ NNW o 0 m2 °< @ (n N Q O OD N N D N N C O- rno>w O O m 0,•O 0 II O ! (n A D 11 11 < N O(D C1 „ , N m (D < p o n O) S ^ m ^ m m V O W O '° m 00 N ^ 0 ^ N ^ N 0 CD N fl S D y N Q l� \tY N O) O O t O <— 3 N Q N O _. N I O N w W N j n O 7 7 N N N p C n n • O C p o f c °3 o0A OAo O �� > >rwp n � a. - m c3 =`m 000 d a _< ��m D NN 3 N a �o o rno o p �� DDN N U n v� cnm D(n SSS� comma c7 N m z.= N ! N 'o n3 -0 m fn m m 'O Ot ? ° O 4 ncn O io in co o c m �v m m m -w a m o D (D jU O O Z W y N C< .A O O" N C d Q II 3 ' 0 0 0? , N ,� N m m W m o 0 C C o' m'il n CD 9 C C G O D n O CD O N N N O < n N y p v v O m m m N 0 p m o °(p 11 II II m m C_ y w II II II 2 y m 7 m 1 f < Q m n c RI c m O �CD o o A ' M o d mN 6 3 O... fl:, cn0 m •a o CO p tr . w J CD n '.' iv In co m 91 o 1 O 0 m N p O H o G m O n Cn N O m 0 O co !j O W OA 11 0 I -°.. -� 0 V vv II Q n p 'j d m m m W O m m N O) O O O 0 N D N Q 9) co a 3 - F m co � w � o W �* N) N < oo � O O ED � rn� a m O � o CD m or m 0 n m m v m m ° m w m3 o ° m 3 o S 7 0 m N O W m rnrnm < O O I) O O O O 7 co Cn O ! 4 ( O 4 X100 0 000 A 00 -wN (D O O "• m O j V j O, A n m 1 c n Op 8 Q V O Z (n _ C 1 A o (m»D O L (000 (D I I y I L c C 48 03 p C, o OD 0 0 fD m r N m Q 6 m C1 CD O O :g = - 0 CD C �.mo m a T c m C - p d Q ® p x m m (D < N m O N 3 O o o N G C O ° 0 N3 mm 0-0 O C C < = G ID a� m^ m o m 6 Q n W O p O m OD N c O N ? v O m � C m W 0 0 m o Q m N N O � c y m N l O CD N 7 n v w T N II m N is CD N A 1 1 O o N N 1 r ' a c C ma O O l -G N N R C N W N O r U 2 O 0 n O y (D U d 6 U) m u> as U m = d m Q U U (7 (u) C ¢ O d N N 42 mo W roc as d Q 2 y c WLL O 5 �= w LL N � C t c O UO =a.0.. 0 Mr; O N m O y U N O) 0 . C N .: ° \i 1000.7 �rno� a) n 0MV00 0 I-- CD r U NOrr aJ O) v� NN oo P- v- o rrnrn co c O V) N N M N C J 1 0 0 U C ol N O U' U L N. N s w if y U U m o N2— 0 n m. p c U ro o• o L O of IL � 0 0. O NaO .�. O WOo O 0) � II f w rrrrnr a a5 al w R h 0 Q (O L J Q ? O O ,? N W E c d o 0 co E o d � 11 w N _ �� E o- N o U U CD U .Q > E ° ¢ 3 � > E a) E U y d F M ` N C', o >_ �+ Cj �o C O to Tl 0 - O E I U E o � 00 = W 0 y U y O O U a) (L 0 N E >`p h N m H � } N co c II �o C C a N N d N U 0 0� Qo C C 0 > ♦T N R C N W N O r U 2 O 0 n O y (D U d 6 U) m u> as U m = d m Q U U (7 (u) C ¢ O d N N 42 mo W roc as d Q 2 y c WLL O 5 �= w LL N � C t c O UO =a.0.. 0 Mr; O N m O y U N O) 0 . C N .: ° \i 1000.7 �rno� a) n 0MV00 0 I-- CD r U NOrr aJ O) v� NN oo P- v- o rrnrn co c O V) N N M N C J 1 U C7 0 U C °. m O U' U C M L d II y U U m o N2— 0 n m. p c U ro o• o > O of IL � ad n= O. E a)S 0. O NaO .�. O WOo O 0) � II f w rrrrnr v a5 is w R h 0 - IN all Q � o C a) O aJ E N o 0 ° o o II � 11 E �� E o- co E > E . 3 � vi F- E L r co ` N o Cj II O y to Tl N E U o � C = W L .� N U y o E H N N m o F- O N co c II C C a N m 0 0 CL 7 7 U C7 0 U oa 2 U O U' U N 0 NC7 .T i d .= UC7vw y U U m o N2— 0 n m. p c U ro o• o > C •U G of IL � ad n= O. E a)S LL y d c :?o �� NaO .�. O WOo O 0) 7 0 w C ° O �rn o f rrrrnr r m u _ N N N N M U J O c a M- N V N M OR J N N O O R h 0 - io r y L O l0 LL O a) 11 N W CO L p M r O o O m m rn Z r ° 0 if J Q E a: n 3 3 U a) N > E L ° U_ N E 1 O E x 3 V7 Ud O .E N = C O U N R ° m E� 0 O N N co } 0 o h O C y� o U II L) L .0 N 0- C C Q C cu '✓O � � c o k^q N N a v r m > N L f O ', u w 5 0't IN all - 0wx 05 MT— O W OD < � c o m G 02 m D o0 g 000 N,� O 000 o w d c 4 O O rL O. r►v y # < OD co CO O fD n (D CD CD V O 0 G O fO N N O m 5_ 7r M. C 3 s o O Ol ` e O j O V O O q 11 0 � CD A N O ID N .<�.n 3 T T m O � O IT1 C°o D OO c`Z (n oo0C. m o CD 0 o O d d ,'� D O < m 6 m C C fD O1 m < O 0. o 0 0 0 f < a v 03 OO N '(I'D' O .0.. O 00 N CD < p II II O �,T 3 G O N ry � II II II II O E5 ! V 4 OD O O O O m CO — N= O _ N m N Di A O O 3 N W & Cn W �O N (0 00 N O- CD rn O �. w o c < Q ^" (D M 7 W In tD0 A AA t~ O..aCD C _ 'Z ? OOA 0 O lCY 0 N CL OWN O 0 X _ p)N N a' D N 0 @^ 1� O ' r j J. NO CD .ref O <n -r � 0) CL [U 3 C m V = , O W O — d 00 V V � » / ( @ ,A � O 7 D lG \t5" A °� 'O0j N 3,3 7 OS ma \C@" CA in'CDO SD s m o� o 11 �o O C N� II 0 ^ a, ry W (AN o OA c II M O O (AO Qj - O N W n V 7 S 7 =r N n 0 C Cn D y fD Dn y O a a N 0 7 O D rZ1 N (] t0 w N o C A m "' N O N N W a ID j II N g<<2 - w O Z d W CO O 0 0? F O -w t0 fn (p Zl C 7 0 O F P O O C C C V j OII O C N O N < C7 N 0 't ? w O fD CD M N O p co 11 II If W CD C .yi y to y t0 11 11 II = Q. W W C) a) 7 OD w CD c L CD 0 M. �O O A . CD fli 4 CD (D O O lD N 00 N (T O C, p so 00 C' O 1 (D G N 11 O 00 j7 . A p 0 W (A p m N W 01 p 06 O m 0 '. N O ear 3 II W o Oo m CD a °o o u r -< r (D -I o m m ro 11 m m_ n o+ m n < O CN II 0 ID N 0 K m o ° 3 3 0 3 O n wl O i O 0 i i S � I io W O � O O p f � _ 3i m CD N O ' DI � N fD � 7 CD '' . O � N CD -� am 6 X e 7 '3 O 3 3 3 m `c CD A ' S ° o m -0 to m N I I N o O O m g m MT— O W OD < � c p N CO M 0 � m CD O T C) d � 000 N,� O 000 o 00.E O. ® CS O m fD (D K tDK N (n 0 0 1 ^ 7 y O CQ V O O q 33 O O D A00 CD CD D If 11 p I -wN CID 00 '"' D) 10 W m 3 j OO OO V (n N 3 O O d d c O O O O. 7 O C C fD O1 m 2 G Z 7 0. G N CO 0 w CL CL 03 OO N '(I'D' O .0.. O 00 N O p= 0 3 O N O N co N 3 CD C O N O E5 ! V O O O m CO — O _ 4 O V) m _ O x Di A O O 3 N o N (0 00 N O- CD rn N r w o c C) t~ CL ? N O 0 O CD N [D CD O CL [U 3 C m N . CD O ,A � O m m m m m m m m m m m m m m m m m m m ........ .. . .... ... ........ ... ...... ....... .. I A L ... .. ..... ......... ... tai 4 ........... . . . .... ........ ----------- �\ i � / j 0 \ t ;�1: a _ " i ,�i - ' I � / /' /' � �, `' \, � L� . ....... 1p P 4 lie .... . ...... ' � � I I '' 'I.• r �: ;, /; •, { -;, { i j / ,• / / , � \` .. /. i �')% � it . .. . .... . .. 7/ ........... ------ .......... .... .. . ......... a C) C) m I f If . .. .... .. ............ . .. . ..... ..... . . ........ a C) C) m I f If . .. .... .. ............ . .. . ..... ..... . . a C) C) m I f If m m m m m m = m m m m m m m m = = = = u r-N C O N N N m N N L H N a N a r O G � C C R ma` O N t t r o = co L 0 n O 0 c O n m E rn p o ® � N (p L o Cf ° o o C/) as o d Q E 11 O 3 ` V R IN N n � V N U N� � O d E ¢ I @ - > w m¢ U fn N¢ p Cl) y c _E ~ L U c � . O U U) C: I O- O R E C 2 S 0 E N 00 E V O II a Uo a m N n V L m ry C N 0. 0° 0 N N ^ ELL' D a y N r N CL r � } T� EL O L (6 II CO N L o 0 U ry C T a)< Ow 2 N N CL o O 210 Ea' O O c O C n rat a �H U 0 W = C 0 U C9 �> ( U) = o ca ca N r ca U LL U. U rp (7 C 0 0 c 3 O m A = o M v a rrra m Nrc cD N N O M C M r c II O U c � O D N N N N- ¢ O n N ¢ W N l0 m - 0, c U O_ > 2 N c N ¢ UO N N e �e N'•� �>� Om W > rn v o w (n ` v r Ol (D (D (D00 d.�.. �GDMM J co NMM (D 000 V H C C O L R L o ? N O 7 0 R ` N m M L ¢ r- °o c W o m E a O ° o y o II E II IE U N o. Y E >? > E 3 H E L o O U N l6 E II C = N L w U ry C E a O N ~ c0 o � d. U) N 11 U) t .Q N O O O N - F U 0 N = C 0 C9 :I (D C9 > CO CO a f 2 `rnq lL LL U N (� c tv c 2 >>: OO [ M 3 A - O Cl) Vcc Fl. rnra 1 °o °C, cf cDNc' r N � r N c D M C Q Q1 2 H 0 _ O Z O H w a W n� o EE® Z � $� ate,. ''* Q8 W o It Z m� ¢ G a m 0 na m= a Z °o m m c w ¢ w ¢ 0 V � U N Z ''h �a.Y N cc w Z Z d s ¢ ¢ o ?. (a N N L t O C R n O l6 N co L 0 c O n m E rn p o Z O Cf m O J Q E n 7 co N Z N Q U fn L O d E ¢ I @ - w v ~ N¢ p Cl) y c U L U :3 o > E E N, C ¢ N S -- -Z5 N V E `_' O n. n E p a 3 N N L c O � N V II O� -T o O N L (6 > N r 00 w'� o 0 U ry C >CD N Ow 2 Ea' O C; r N r M c6 L 0 O 00 } CO N r o lnr w N II NL V N N N R M M o o J t9 N { g C 0 O O E = c c Q � K H Q Q1 2 H 0 _ O Z O H w a W n� o EE® Z � $� ate,. ''* Q8 W o It Z m� ¢ G a m 0 na m= a Z °o m m c w ¢ w ¢ 0 V � U N Z ''h �a.Y N cc w Z Z d s ¢ ¢ o ?. N O ' 0 wl rt m S O N N . 0 I V r W jODNi I r W CD OA >> OD O 00 V � 1 OD CO V O O N OD A W OD (n C C A' T W< G v p N < I N ODD 0tll O. ( D Cl) G) =o O c D� N G) O_ j i, 20 ,< mon w 0 O W- O- C w H Dm v D m W (� o to i G m O. N � :E CD A G) W Cn 0 n C L ( ( (on 11 O wmmo N N N V co O �0 co A m G f 0 O A (norn oDOOO 1 2F D CD J J oOOsl ry N D N 3 ! !1 r 3 rnrn(n I I 000 D d (D O ( ( O CD n O� O Z• CD 7 'T. . 3 m O V J y w O O O w C7 A`G (7 w (D O W (O I C W NV NO co NO OOA O A A� () 0 r V�w O ° o0 to J 0 II 7 N 00� CO O II CD w w II II 11 C 7 O O O J Cl) �� CD cr n W �� O O OID NO n {� - •' ' n » O 5 (7 N 0 'm 0 K A OD C 0 Z m N 0 co Z = m O O A CA � O O N C) T � y o�G a d 3 7 ((D r y gGo '� C u A G ( D. CC v G Z7 �� w O p C d m J N O O m _ O 6 O< — m O GG m (> C N O 01 S () W = (D fJ+ ? O N m w < < w w 0 .CD d S N C o 0 0 . o ( � O Q N N c '9 �- I%I CL CL C N N O N M L O C m 0 O. (D N N JC C 7 C) N O p O a 0-0 O N C> = N w a D y G) _T` 0= N N CAP (D (� ° Cn CA y N a C 0 3 < 5 ° Dw p C)0 3 < CT ° �_ D 0 05 CD (D O L O m W `G m n, 9 m (D (n C N W '< m CO D w m 3 If W n 0 7 II a C) n O O m . 3 m n O 0) K m •O O io O o' J co CD C ? J � ° O r y ° D = D X a y o o y a o o a m v p o Q -i o s N O it o _ O N 0 N CD � m 3. J C m � m 'D N 11 w N N P oo> (D j O a05 Z -z ( ( (on 11 O wmmo N N N V co O �0 co A m G f 0 O A (norn oDOOO 1 2F D ° o oOOsl ry N N cn 10 O) I w II 11 II ! !1 r 3 rnrn(n I I 000 II N N N ( ( O CD n O� O Z• CD 7 'T. . 3 m O V J y w A V -1V Z -z ( ( (on 11 O wmmo N N N V co O �0 co A m G f 0 O A (norn oDOOO 1 e (J CD (D t O m, 1 W N N m O 3 N (p (p O -' ! !1 O -., -O w O _ I D D CL 7 3 ( I N N N r- CD n O� O Z• CD O O O W 0 'T. . 3 m O V J y w SS S— S"CD N C7 O m O 0 W D m (7 w (D O W (O I C O CL D 1!Y 0 m 3 L L C ° o0 to J CD i 333W o o O a CD w w II II 11 C z w0 O J 3 cr n W w 3 o A - •' ' n m II m 0 'm 0 K 3 CD O O O' � OO r .�rn. 6) 0 03 Z -z ( ( (on 11 O wmmo ey O co O ( D '(�( o (norn oDOOO 1 e (J ( fO N ID N OC.T O 3 N Do0I nO) O f > O O J m W J7 w a I o? O 1 ) C (D is C O 2 N CD = 0 I N L 0 1 .Z1 .Zl p `< C II N Cn CD Z71 m N N I m 3 co 7 » O W N � C Q � N n � 3 0 w Cn L � 3 0 Q � O o o m S N W M a n � o -o o s S � N W w D O ° ° o f D N V A N f J 00100 1 -N 00 O A 4 c (D co co ODOOD co C - 0 - u I J J m m l n w O < < I =ac )(nJaa c CD () HOME m w O O = _ 0 m C/1 Cn a Cn L =� Cf)n 7 � J Etz O O O V A (n 1 V A �D 1 r � (norn oDOOO 1 y < ( fO OC.T 3 N � . II O -., -O (TN V o rn w (D CD W O) LD 1 < V V WO i 0 0 0 S 'T. . 3 m O V O O m �' ID S"CD N I (n CO 0 (7 w (D O W (O I C O CD aD3 C l CD 1!Y 0 N W ° o0 to J CD i n Q I 3 O a � m z D CD O J II 00 D O ° ° o f D N V A N f J 00100 1 -N 00 O A 4 c (D co co ODOOD co C - 0 - u I J J m m l n w O < < I =ac )(nJaa c CD () HOME m w O O = _ 0 m C/1 Cn a Cn L =� Cf)n 7 � N '0 ID (D CL 3 N N S N 11 N !V O CO O Etz =1; C) a y < OC.T @),6 N Cf) II 0 i0 ° w 3 O V 01< O 0 S"CD N (n CO 0 m 3 O ^ C 0 Q © 0 N — 1!Y DDC Q T N N ° o0 to J O _ < (� 3 O a m C D CD CD cr n 07' CA CD v 3 0 0 (D ID n m II m S CD 'm O 7 0 W o (D O � O CD N C) y N a M D a~ o m p o s It W O N Ja � o O N N '0 ID (D CL 3 N N S N 11 N !V O CO O E 71 L co o a) N N a d E .m a r W N C c M W m O > II O U co } ° cc ID W N a) - m 3 L } ° `f O N N Z C Q O co C M d N Q 4? w 2 m v a ti� J Nr Zi R a W O N cu u Corr o o E J L O N N II N y Z — m d o U m �— ° V r 3 O NE m o W N OnM M N� V - M C") h c oa m^ ❑ o000MP M 0Om II 11 II rn m W � U 0 N 000O�N N V V a)ma) 0 WCt oo 00 m E� O E E E 55, o o ❑ ca ° W CD CO c O ono @ m E v a) Q d »> C U N C CO N W E O w E` N W O. V V m OOO LL� N)O l0 ca co R Q �' - d O r) O O O N V O c o mva ma)� oo N OY N NSTO T= to O r r E O 3 C m 0 0 0 0 0 0 0 0 turn E ON�� F - II ° E W M C U E CLO E N—�` /��/�) °"t a d U M O co —@ E N O V G G L Q L � .� O — V U a)ww� N'C� �N ° E O II II > N 31Of)i or)n 10 a� a) W Q W V) MOO)nN� 0)07 QT O M. - aDeO c_ E E m )nrnmvvvvrM O p�- Q 00 NM'P O c �N"") oo c � r o t m 000000000 y O a) a) p 3 a V0 c C y C U w CO @ TOi T 11 r ca O Off W 11 II II ❑ Wm .o ca M - O ❑ N . n w> 3: ==000000000 d Q Q rn m o 0 o a) p O o 0 0 0 0 0 0 r @U 3 C Cw IL N m °� N V co coO� V N CL 3 3 °@ Y d E > comcococorrrr O O a o o E: E � 'C W m e �# m . aD aD .... co r O'c O - 7 m O CL = cOa c FL L) > w O c ° O E 'F o c o W y U m C N a) U 3 > 11 m O n a) ` W J O } c cc M O O @ C_ N O O o il C O w Ilc M O rn O Z : N 10 V m (n Q N Q L 0 0 Y CR O m m m `m `m o t` ci 0` O 11 O O ° ° O .m.. Z .MNN N 11 11 arWi N co n m0oo o U J � > cm ❑ L 2 .2 o x C ° rn O N o 0 0 c o m W m W J _ o m 'S d Uc i c ca)a)m T `oo H ° �Q n. 'IEEE 3 7 7 000`� Ci wco s 0 C; U w ' O3M � w Z »> W IlcU 11 W 'C, BO O Lf) co 0 'T C E 'OO p a) N- IC N N V C E LLL NOS V N Q 't Ed > d `- ns �- > C c �C "'��C i= 11 ° E J a) N U O) ° N y VIIV LQL 00, C R •W 11 0 N Q co I L) `U E�� II 11 CD 0 mU C 00 nom c a m�\\ E E )[i N `- fa is N R O O O V i. C J ca m O !� rn o B mo E O wt: II o a) m CD w 20 ca • a` 0 > O II II II 11 ❑ > O T m > m W a) a rG 3: 2(j 0 o O. 7 0 Q 3 2 mm- C d a) O O V _ E ° c O o o E o m c - I r l m ❑ S-00- �cna dU L r 0 N N N d r O C_ c rn E a I a) C o o ° ° ci o p II .m.. C f0 m a a) o U 3 > cm m K — l6 m W J i 3 ° 11 O Y H ° co a) 0 0 s co co E } o m W N O N W C O c a . -. N J O y O W O J •W N Q L O 03 V U C O )[i @ `- fa is O N w A J co O !� p\ m II o a) ° N m N a) O d ` N O N CD Q U O 0 o O. 7 0 ta ' O W $ n C d a) O O V cm N ° c O c.9 W w u� )n N V N )o U M - d. lf1 m ❑ L co o c X O a .2 m o O W � O n W N W O 3 r O (A c - w m A 3 3 UU m >�r O m O O `c O N W - m3 H m of UcD CD ❑w a. rn�NO ° O OS ❑N op oV W o mVac cUy Sa w N EE 'o 3? 11 c C; m a) co to N� d> Nam O a o L M 2. E oo II II �o O R o m O O 0 y a)Q E D $ N M (n 3 U O ❑ K OOK !O ° L? to M ( CC p O W O-ln W C C O U O O� 00 V (n @ a Q 3� (J U (V pj _ c0 00 O ° G E LL Q a s d�W, O t` C >`2 O U O) m o- U C 3 OMJ O II II Cc � G W O p \ 0 0 O W N 't EOO W W a) U c r co N p c c O< U U aJo) 0 - O F'- 11 3O -2 Ea V ? O-O a) L N O a) N ° r N a N a) o o Q O 0 'O U 00 MM —N 00 j CQ) al O M o — r N W �� New S QL W'Co 00M .c -..cam > T W «. 00 O) W �°) a) (D Q 2 � °vim Q r; E IXXI C M ° a 6) aD Eg n n Q W m �` o ° oo cy Q C °OO >^O E E y N� O M 0° a W C' E E N : 3 N U tea) ro b - N M V' dc" Nn gv >o U d�0 ou N o a a�i° cq O O O C o c — 0 c Z, O�. a) - a > c y C Lo -- C Tof CO 0 m W N r O _ 3 W E LL C OO >, II co .: m W co •6� O Ka •- 3 m m 11 II ❑ -m02 r NQ W 3 o o c,.,0000 O y )O 000 O> 3 d Q nl _W 3 O O c oo0 O d 1000 N p w x LL m E ca'� p ro m o m U n 33 C Cw LL E °_) Oco co mmm o O N 'O m 3 c O > m CD co co co > E 0 o 5F ,c J� W &C J > N COO co a w w rd2 EL L) > ❑ a� X50 0: (L E-() > 3 N O N' O ' O c CL 0 m rZ II 0 71 CT O m o mm m0 vO3T 0 m < xmi _ o i mmmmmmmm m e 3m m ,� 33 �� #< mmmmmmm C #c ID T� 11 r t) co mmm o N t wwD mmmm < 3 d o f m m 3 w O) ANO m91 .AN tp m m M.m .,z n ANO m mAN tp m 0 i 0 0 0 0 0 0 0 0 m o 0 0 G D CD m i 00000000 3 F <m6 m c0 mw o000000 3 0a� m m d rya m oD <0 II II II II if 3 C m ' y C) -5 O? _ C O m N o im CO co N ! L C p m ` V 0000000 O D) � ° ; ' 3 0 -- V N (p 0000 000 n D ° �- 3 O AWN -+0000 O D @OL CA CD CD O W N�� 000 pK� m mmA tD tliN O N N p_ OO V m (7X A V O mN0 y m O O O A m A N N A D l D m O N c 3 17 f� A G j m O Cl m m m A O m m < O i N ID y A m N N fP D) m tD O O a N to W o S D o @ @@ � y 0 0< O 0 01 CA tD o m N a (A �//N�� O m N p° p� l7 n W d �. f1 �j —1 N N N W C tmJ@ 0 an d O7 V O W 00000000 W � m m 3 E °3 oAOa'o °mo 3 �- �3�, 0 0000000 _� x< 3 NA N W AJN O m 0 �N D�cmi� SSS @^:.t °.-+0 c w mw- W+mo°DNO � o (_A o M A m m CT A m O fD n p a A-0 n N N 3 N \tY 0 O W O m -+ w w 0 fD C 0 3 C O W _, a D] w N S 0 O N D CD O m W N C) 3 O O O C O Z. O V y W '� C< O O p 3 3m m °c_no E o m= ti70 3m oCD n C y N y O °O 3 3 3 y m G <� N n C 6. a) p j y C D CD m' 0 < d m N a ^ Am D]0 O II II 11 = 3 ;L 000 'gyp p 000 (q W M N N� 00 0 _ (00 n !_. O II m V O CT tJ 06 N p _ m CA M.A. N ONO m 0 d "' ...m X00 W m m"� m M(D V N) W-4 N W (T O m 0 m N X p m S O 1 p r y 3 O y y (D V O II -mNwa 000'0 O V y M CD U) w II j j S Z N W r O p mmtD II Rl m W0 3 0 co D 0 m S y 0 00 C7 3" D o_ fA o °? m r a CD x _ Z ° 5 y m (D 7 z d O W co O O Q i N C N 0 ID p m ? o m .t m m 0 tD N D { m m m m cmi < o f ° F n n = m m m A fP 0 o n m o � o _ 0 OD N . V � O rf'9 x m II a ca ow Cam N i c 'Z D m -� zLO vain tD ®tr $ m y 3 o x �o O 3 m N CL 00 © CD 0 y n N3 �m OU ` O m t1 //y� N O M Z3 @M O 03 W S W 0 D m min v3 V = - 0 m 'O 3 V z. a11D N m m ;a, m N M O N C O r co O y II ty 0 N m O fn 3 0 a 3 0 0 n 0 N D) m f 0 m p N N m N N m O tb m O 1 O r N CO >_ N d E ¢ 4 F- w r N U � �a U K � c R O r to r E a O. E= O T L � N � �- I I N 0 L o O N�0 �ON L O 1 Q � a F� m is N U J J Q N L 00 C O r W O `r" O L o On E o d C n m _ ♦a II (U E c f0 (1 o V 3 U �w s m N 7 C 0 C > E 0Q E U CA . 0 ~ w t N c a c o U O Cl) ta C1 O =N E N o E 3 p` N w rn U L C 'N N p oo TO Q1 Em E Q Q N N LL�rn II U r U N Q o O O 0 0 mCL x m mr U U) = C o� U (7 � > co = o _ N 2 - c" N w LL N C N (7 L C N U LLJ C C m�A_ or>va rrra Of Nt:n I aD N C NO the ('1 r C II O z n U a O N i J � _ m N 2 R ¢ U O ' C U O_ > O � U C 2 O c ¢ O 2Z) OU u a tl E o O C N� X ty: v r rn OoOOOO d� (D (7 f7 J tD N th C) O O O O U F- i� {lf L � t O L! O N �I � � a l0 N y Q N O C tp OE A r Ci 0 u E II I F U E a W j U) a > E E rn s vi O N c a 11 N O � N � � = N (Q a) E �v U E Lw 3 c Cn U E of N E � N N 6 O F- ro 10 to r v � N O O O C C p_ Ix w� U 0 U) = C o� U (-93 (7 Onto >C _ = U f � N Z I N LL 4 L ) C > O L m > A = otova In 1- In a 000r v co r N r C rl a V C 0 . U 0 m m to L a r O C O R N a m O L O O O w � N O U V o 0 J V E IR .a a ID CO >_ 0 > E ¢ 4 F- d ¢ N m >>c O N U � uj L U R O r to r E a O. E= O T �- pf tt o O m U 5 C N�0 �ON N O O co O� m Ert m r O to � ` `r" N L o F- T rn w oo c r O r r V N M M N J r II L m N 7 C 0 C C O _ O c N c a m m T Ix 0 w n� o E E® Z �$o Q' w t ¢ FV >So= m d m d w A o va �U ca a` Z IL N 0 0 ¢ IF Q W N co O O C O N N I V M � r DD w mom I �m 7 N I Ln �O GnA� N m ry N I w o 3 CD CD Q CD (D z. < CD C7 O m m m w D W no Dd o v ' 1 n 1 m 3 ) 1 m N 6 > O V Zi > V W C D A m m V M 1 i \ N R I OG7S ID (n ° 01 m l7 w i a n� > N C N S 0 20 C° a i C ,, CD G) y 0 = � O (7 J D 0 3 N NO' WOW (DOOON N V r wA cDACDCnm n p e 0DOm OOAmA ° j n 11 3 m e CD ° 3 cn CD Am m m co O Z N O AO < N N m 0 < m_ N A to T�� . O N '? C GOo < 0 m 3 ° .Y'' O Cn m O << m CD -O.. CD O p I O S N C O N m o CD N M 0 S O N O O f ma @ < '' "G) as . v @ < ° f CtU 'D d c S ID Dt AC y NO 3sp myN O AC y tnO iv2 m0. a D N mG)RE3 nD= N CD 3 1 CD o 11 cn V c o J w Co m D m R- fA to H Q d c f G)O N a w = o °1 D m G� 3 C 9D 1D O o m `G m O- ID O C7 cp c OD c= co c .Q•. m m CD o o =G' m = o v II G) C) 3 II .tai 0 i 0 7 0 () 0 7 a Cl m CD ° O 3 W N G 7 O ° ° o rn D D 3 m N m N m a o m D a o_ II O o D o a O o I r o I c n ? O O N W N N J cD _0 055 3 9F�D N Y N M rr O O m 00 Z I II II II II 6 O I V J V c D II co O r ,- �O V A m i cnm0O+ m 0 0 0 1 c co v 0 W O O C O L N tD + m N 3 Q C> S co I N N N? m C U) C O Wo S PE 0 ° N y w P. CT (n m ,2 N 3 0 0 0 ;,2 (D C O 0 omw2 3 3 3 m H 0 mmm3 C oDwmtD' J J W O i m 0. @ N o F m m aC 3 Z —v mn C m CL 3 — f �1DD h ? A cn Ln � II Q Q O m O D ID ?. < 1 DD co O 3 � e O O 1 0 0 S m C 6 N o � v C to to 1 m N D W � 0 C ? r ID m r0 �, n, O. D ID C m r CD m m d l 3 c O r rnrnCCA CD O O O O D t0 :3 m ` 0 A O W A Cn ra cDOCD�2 ' W CDO CD m +c0 ' ' 0 1 O C 3 O D °. a D ' 0 2 0 W C.) N ° - m v mmDDD oDID m ' v I 0 > O o 1 n O � > O O 4 CD O a m m . C - V 1 J m 01 I .0 2 j ) R i O m 1 i O x w (n cr) n L 0 a 0 CD 0 3 0. N N N Y N M O O 11 00 Z O 6 O A 0 II co S r ,- �O V A m i cnm0O+ m 0 0 0 1 a (o O 0 W O lD tD + m N 3 Q C> S co C, O U) O o�� S PE 0 ° N 0D N � O CT (n y N 3 M3 (D C cv S O G a omw2 m=° 3 S H 0 4 C oDwmtD' J J W O i m 0. @ N n3 m o 0 0 � l aC D° 0 o mn C m CL 3 — f �1DD O N O m . O, D ID ?. < 1 DD a( O 3 II O O 1 0 (0/) S m C 6 m v C to to 1 m N D W 7 0 C ? �, n, O. D ID C CD r m m d l c') c O p D r ID 3 m O O m m n 3 N 0. o A M 0 '0 n 1 G O 0 M Z 0 o II cD O o D = z o O A 0. N N N Y N M O O 11 00 Z O 6 O O ? co S N = W 0 W O lD 7 0D to m D 0099 1 DN-1 A IV 1 oa o mA' J co co to to a m m m m i C O D I n N CC) N N °. W = O. O. . RD -0 3c 1 0)0) O ( 20 � 00 S2 o N G) y W oo DM L= D � n G) ) o am p n V � Ila O O_ A, � 3 d N � 7 � Q o C tlD O o Q 0 0 o� 0 x� n� D� o �- ( m 41 v O W 'O v 3 Z1 N � � 3 � N N N II N � � N � O CD 0 0. N N o n p O Q C 'n co O -i O lD 7 0D to m N 3 Q C> O < m� O U) O o�� S PE 0 ° N C 00Q y N 3 AC 0 O cv S O G Cl) 0 4 Q :3 N n3 i C D° 3 o a o CA I m d N =• m v 3 II o Q m 7 0 C ? o m C O p D r m O II CD D --I P O _ O 3 II N G O A 3 r O m � m O_ Z7 Q O O. 3 C N N N A N . � N O `c a m 1 o�m N o @ N ca N a N C V' .0 d • @ C N N 0 U 6 co d a> 10 O> W `i co O (D !a o i N (n C M N �. Q rte• 3 y m m - N _ (D Q L (D O J J N m C U I 4 m m `m o m '� J F II c0 v � O M \ W J Z . la m t` W N of m m `v @ v d O rn U p o 0 3 N UJ r O_ R O @ OWM MM -70M CO 0. O d O r� M M N �( O m 1- G O II U N^ �� OOMI -wow tR C C II II 11 W IA O� U 0 U 0000 �•N N V• V' OEm om" r; aN Eo ago O E O E oo" oco p (n U@ 0 =1 o L0 d 2 . »> c Uo CR as o @ @ E Q CL vi N n@ U@ c o , � O m O 10 m (O 1- (O Nl0(O (a E W �LLL �7Q (ate N U N O. IOOm W 7 O Ca OO N"3 :'q V'm Tx R Eon C_C N ��0000000�C 17 CO m��Ci I - II E E ( M C U O-0 E N a d r m O co @ 00 3 6Ua@�aU LQL P o- y u? v U N Cc R 0) O E O C'4 II a > N 3 ( O n N U U U a� E E @ Q @ y MmO(ON V'O(O V' C OO M C E a) 0 0 (O N m V' t l'- -'r Q ` c Q O C � p 5 0 0 0 0 0 0 0 0 0 n n O@ 0 0 3 °' C5 ; coCi .� ran s (q C >•0, 11 II II 11 0 > N m a LL - O p N -0w > 3' C o 00000 000 r �Q Q rnol� o`o d o 0 000000000 r ca >+ C C W LL wT:Nvowo-mv N a O >O@ y N E > m m m m n r- n n o ` o oE S'r @ me @ mmm(omcoaoco e- cc C o.9 m = @ rax E EOo. mcna aU > o W �m N p m N N w r C a C `ma O t N {� N C U 0) J `p J 11 W a7 0 C W O O @ O S O 0 (n U d 0 @ N m ID v O v al In �: rn Lp I� a EU 2 cc co C 0 Q V O C O U CD Co C_ C o-o rn E E N V V L a 00 O O O N rn C d d o > °o E E C. o - C C . d @ C >,m m 0 @ - o� lL.Op a > �=a))Q N o0 e- W @ U Ll. ..�@.. c-ax a dU U m 3 d ID a a J v R 0 IL d O i C� p E 3 co 3 O U U U U C O N cc Q t o in N O OD O N to - 10 10 N N 0mv— N 0 N N m O M O O M N V' N N m C 0 0 0 0 o d 0000 l a O O N V > In mm m # d mm mm w O C rn O E o a) d m O w 11 0 N r N a) U 6 N ID 0 v H 10 U o (6 J @ @ 0 0 0 m F. 0 0 o ° T p v n O IC M N M Ov Y ('o E } = do m N Q C Q H L 0) o Y C (fl IO m N f6 l6 is m N O c O` it I I (O M Cl O O p O S Z L� ( E 11 a) N �o O a. o.000 amo a J n O 0 L O X r 'C m N N p .60 @ > �_ j II 0 m > - a C CO N U O @ 0 (� •�� 2n d jE_E_E m 0 0oN 0 wN C N N m a m. 3 OUO co O M L V' w Z > >> @ C U II G @ O O O ��\\ V' V tiHc C i Vi N O. . p O C` to E L t t co Q N O t� C II N - C U @ £. c r�� N O M M @N'C O j C_ 7 a) N U V r O (O � � _E F• II E O n U j a C a U— cN• N @ a N i � U O O 11 O m o N 3 d£ I O .CM I- { 2 o 6 I�1 @ N N N m ti 's- I w O O O 7C m U U U E II II U n o Om 5O iDrnm O n N N a� C @ d E E 'o Q ( N N N N N 0 C Z 3 m @ 0 Eon R R ID �J v)rn� CA =-0 (a E O LL y 11 c (o W > m w N @ d 0> O II II II d O >-> aw N ag 3 @ N a N 2`U O Q 3 � mw lO d E° O L oo E tE �a d N h 0 s �Oo_ 02 a w00- aU O C O E O w 0 U 0 0 0 3 > v 10 U o m @ 0 _ u � F. `c J d Y ('o E } = o to c O o o S OCo d m N m N J c ca rn Q s co 3 O r R N W i6 O d• 3 R U j II o o Z ' a m oom C (O F aoio a m. ry O O a U 0) zo d {n al p r0 L f n U C X O (� R Q ( n O f` tiHc •a o O @ p Ea z::rn ?c SIC CC) O `c (o �n ol ^ L 0 U( i 7 a) N U 11 d II 11 W o o p (A j a C a U— x 0 O y E E o == O 11 O m o N 3 d£ I O .CM Z�� o 6 I�1 m O fo C y N o om I w O O O O I- O ' N` OQC N . C (n U w C C Om 5O c v E -L L 'o Q CD 'S (J U : N I (O II 11 IMJ�c N ; a o 0 0 @ 0 Eon R R ID �J V C 3 m y ( porno W O ~ U U N rn U O N U W N @ N a N U U D co O UD d r vv O L t` d N h 0 U @ M 0 am 't= 0 'S's F. O @ .-. 0 0 W R O M U U 0 1 M� O E�� O) C II 11 Q @ O E E � 000 Q N 't ON � �U m 410 v (�]) ' (� v O Nc') 3 c � (n ((D CR o v >� (n ca (a E O� c'm > it m 2 0 to Z` V Q CD m N o O am N tri a) aG E II O Ob O�Y orn'" 7 >� mm m a`r� � O m in a EL > 1.1.1 .i OD N O i O N I i Z1 O i C o a. 0 m e�• 11 0 m O N O m o m71 - v w TOO v d0 m o xT� m mmm m co mm m # c Cm d c 3 ro o -�'3 ak (D aoaaw Imoo U U c �-I o mmmmmmmm < 3 CCD F d o f F Il d mm tommmm y o d N P A N O (ID 0 A N -.. d film Ip .z £ D n -1 CD A N O m a7 A N (D d o 0 0 0 0 0 0 o m o 0 o c o 0 0 0 0 0 o m o D 'N 00000000 F -Ca m p 0000000 ®ate 11 CD m N m m �I 0 Il 11 ll 11 �� � C m �•� C/J N 7 C, 7 W MT O 7 Cn N< O C G G _. W m CD ID f. C (D O d y (D (D O Cp N �+ O (D ~ 00000000 d ?' 7, O O� W W� (p 2, 0000000 n - � O O _ O O O O O A W N D 1C Y j j d W N N 8 0 0 0 � D O' G 0 m om A ION "O y N 3 3 O. m C)x A V OmNO (D 0 0 O m O A CT A N N A d N N N C C 0 0 0 0 3 N, m m m A O m N d < o d O W d (( ^^N Ion W Cp = d. I) Q. N In N 0 S D o \CJ1� \G N O p G cn N O O d m 0 W y N / N� O d p 0 0M O W N 3 II N N N W C W \C N n N tD 0 0 0 0 0 0 0 0 (D Cn - N 3 C 0 W W V \ T 7" p 0 0 0 0 0 0 0 CA - w (D < �j CID _ C NA N W A V N 0 / O (O� D m co S S S / N �' G N j O. » NI m m N O 1 O A 0 d m ACOco m O N 0 V O A-O N N to 3 SD @ V O' W O(T� m/00 (D C 03 Cd O 0 N d d N `C WS W pO W DN G m O� II O p O O O z. p Ain " G C O 0 = CD m Q (nO O m . n 3 �a d �� CA @ NddN N <n �3 tnm V m O O d m O II II II ? 3 m< 00000 (p jp W cn co 00 (� d O vN O 1 CID O p II ID -1 00 N�00 CC p 0 » Cn CD m m A O N O d� 0 "' A O O l a p m�. O m C D -4 O W -4 N W C T O m 0 N j d f D S O O N C r m W W m l 0 " D m "N � � N o 11 w m v 3 0 �o rnrno ° f m 0 3 r _ m .di r W O d d N W O m K y W . a _ u r m H fA d ' Z c O N (D O W it 0 v 0 0 06 A to ID 7 p A O (D n m E O d Or 0 O < 11 < :E (7 n L�1 11 0 J CD m m 3 0 3 0 N m C' a R N . � N V O r►� 2 - 0 -a 0 C7 g " a T mcp ®Q O O N m :E .:3 9 j C N j CD CL o ©o F o N 0 W N O'O O m O � A p AW °� n� AS W� DCD wm m 0S A » o (D ,6 2 0 � tD IM V m w W m o � N C p O O � N m co A V O D CA O II N m O p d O O r O O O d CD d m 0 O II O CD m i0 3 0 v N i iT d N A d 0 N m s O n O � N c o d 0 E p C, N T d O Q N o U tti a= N ID ma U (D J O co Cl o N 3 3 N I N N CD « N N U (n N N E o 0 N Q m N N R a m in J Q M L J N 0 U p N r O C o y � 0 o m u `o w cc d N 0 U) ??N 40)— O ° U y > E a)¢ U ~ 2 O c v` N co • U- > = Z o N o C O Clo m E Ci co N o E V V w U O m rn L 'l6 N O� m J O rn tub E O U L V: cl c! Cp N « H CL O } E H O ° R �O c Q II U UL co fl: F- `O .n N N p_o O C p m C O > �n_x w mi' U (D U) = U 'a c U (93 C�u >� U) o ; = U � _ U CL LL R U / (7 C \° C C E! O n M 3: A - OC) -IrIX fl- rina 1 Q Nr C 1 Ca N f" N O M c Cl) r c II O z a U • U a) d d m 0 3 G U > �.� c QN a=) a da Eo dw G _ o O > ` O 00) N^ ? rn > rn V p w (n ` V r �) rna d om00 (D� O N(")M CD co O O U r ~ c C � L � I I y w O a o O � v t6 i0 w d CD L L Q O O C N (D E N o o 0 ° y o ) lm t E 0 E Q > E E s vi w o U) o N C� 11 O N R ca m m C = (�) w v N L C 0 (� CO E O t- C , 4 Co d' } � ~ o I I U L .0 N O O O C C p_ �r U U ( O ( U O 3 CD (D > U) = o 2 _ S d LL C 7 0O O C m > A Oth ?R rrro {0001 V <O N C' r " -: r N�[")C r m C L O R m o u o v N (D L O M O O L j m x o 0 w w m a o Z E$® M w U) � �j m o0 w Z 13 a ma o a` Z 0 m o Q m -°--p Ix z Q U < At o L m N Z Y N� < C3 ° w a . O ;sue 2i Z = d _ < Z Q Q c o d 0 E T d O Q Z o U tti N ID U (D J co Cl 3 3 N I N N CD « N N U (n O > N E N Q m N N c6 U) j p E _ o Q N 2� U p N 16 of O R ??N 40)— O ° U N �i O CV � E� O N N co r CD � >- L o -Oo rn ,°° U r O r r 7 N N N m J II U L V: cl c! O � N O E c c Q fl: F- m x o 0 w w m a o Z E$® M w U) � �j m o0 w Z 13 a ma o a` Z 0 m o Q m -°--p Ix z Q U < At o L m N Z Y N� < C3 ° w a . O ;sue 2i Z = d _ < Z Q Q o � n O j N C 7 W O W ( 3 N f O N V CD N m < f o o N f y 3 N C t 0 CD < i 2 O m f () O N CD t m w D m 2 C, D � m •c m v o 1 r � f m •z > ` W N 0 > O V V t0 tD A W W '(JTO m O m c C ) GH Cn o O :E ) N C v G) m' ,0 Q' _ N '= m G) v C) � 0 (7 CD O m 0 O p (O m 7 7 ° cT D 0 S O M N p 7 n ° A 3 II CL 0) CD W v n wows N v 1 � II S N N N m @@@ r c W .011, 1 WO 1 Cl) ca o 11 a o < ? w C o D < 3 � N m CD CD 000?. tD O CD S O tD W C, 11-1 m o A Gn 3 CD m m N v m co 7 CD m o o �C �' fU, 1 VJWO L O CO) O CD N �Am 1 7 S v a @ 3 N N N•O < W Nm i II C Q y co ( ( II N N O �. _ C D rn = ° O p 0 M pD0 C \CY CD OQ-1 a m (n O S 0 O 0 CD O 1 CN CO o CD O O 0 C m 7 D m O O v n CD w m M cn O 3 0 er fD N G m m m n =r 3 3 n o m fD m n v D CD 0 c 3 m m m m � CD N N 3 � z CD O m 0 O p (O CD 7 7 ° cT D 0 S O M N p 7 n ° m 3 II CL 0) CD W v n nwI D fD s O O O A � S N N N m @@@ o O 0) o ca o 11 r- o < ? w C o D < 3 � N m CD CD 000?. tD O CD S O tD o (D 7 - u 0 7 7 X m 0 O w (T CD 7 7 O 7 7 o 0 d II II II II =t D N p 7 n N N W (D 3 II 9'� 0) CD W v m W m nwI D fD s O O O A II S N N N m @@@ r O 0) V m O ca C Cn N N N A W r- o < 0 No W W D < 3 � N O O CD 000?. tD O CD S 0 tD o (D 7 3 3 3 w m W Gn 3 CD m m O v Z W z 7 CD m o o A fU, 1 VJWO L @ 0 CD � CD Cl. ° O CD Z 9v m N N N•O `<c m ! mE- w CD W W W = Q O co ( ( II O O o N? p 0 M pD0 C \CY � 1 ?• C N N N O c O � O 61= N A o CD O O 0 C m 7 O� O m O O v n CD w CD 2 m ro II � =:,< 7 CD fD D O 1 W � O = 3 3 n 7 a S coo—1 r 0 0 0 0 i m O O O O 1 7 : . S (n A :0 W ACT m kD6 � o 0 o m l oO m rx m I N 0 y ID I m o w D m �-wo nDm m C CD I O 7 )oo I n 0) O I 00 1 C - ! O O. r x 1 C m O = m cn _o > y L G) 10 ) O O 9!1) I co Cn0 A O N (D ) O A W A J t0 (D t0 t0 W W CO W � 0 0 s I O_C- � co = 'O C y m m n� G) M I- O = _ o co (1) C) 0 1 :6 L= oD CO ) O ° o X m 7• w D CD 7 7 O 7 7 o 0 3 =t D N p 7 n O 3 II 9'� co m W m nwI D fD s K) Z7 II S r O 0) V m O 0 C ® 6 C Cn I I t0 o < 7 m to W W D < 3 � N O O (� tD O CD S tD o (D 7 N m W Gn 3 (n 3 G o9) wC Z W z 7 CD m o OWp CD fU, 1 VJWO L @ 0 O. a � CD Cl. ° O fn (7 9v m o O `<c m ! mE- w CD m 7 pS m ro ^ N O O .� O o N? p 0 M pD0 C \CY � 1 ?• C N N N O c O � N a 61= N 3 PI• o CD O O 3 m 7 O� O m O (n n O v n w CD 2 CD =:,< 7 CD S D O 1 0 O = l 0 N n 7 a m (D D CD m c � m m o CD N (n 3 L01 " z O O CD 7 n ° (0 O D 7 m o fD 3 + m n o W O A A C) O ? 7 m ° A tD D zi rn a a a D (D o 0 _ o o W Q T E1 7 N C � zt m ID N O) W O ° o X m 7• w D CD 7 7 CL o O - =' =t z O 7 n O 3 II 0 >• O A (T f 4 (n 1 c o n II S r Q Co O W (T co O O O f (n 7 � m O ? t0 o < I W O N %C1 m R S O (� tD O CD .O ma W @ 3 N N O m W Gn 3 (n 3 G o9) wC N p (O O CD fU, 1 VJWO ?.S m Q @ 0 ° m 1 o .<OX 11 C (7 y> w O C ID O N O- O .� p m z, <' m O (n J GA 3 CD 0 3 1 ?• C N 11 it 3 m ° CD 0 0,0 1 3 PI• o .O•. 0 � aD�cl CD n w m D C/) 3 OD O D O 1 S CD CD c a n 7 a m (D C II � ° a o a O m z O O 3 O II (0 O D 7 WO ° o 0) m 7• w D N m CL o O a� o z O ? o O 3 II 0 >• � fn A N S o { )0000 I D N -I 41 fl) I J W W W W t ) A W co A J0 CD t0 co W W W W �C•v - v t J 7 m m 1 n m N j O. C )Cn 7. O - 0 i C K m m m CD 0 C r• 399 O O == c N Cn co >3 oo Cn Q L )o R] � m 7. 7 A CD m a v N N II N P� O Q � O St 7 j a CD N i s vnjn a� ? o 11 O � 1 Cl 7 � m O ? o < I W O N %C1 m R S O G9 = tD O CD .O ma W @ 3 © 3a 11 C ° v p (O O < 0 w s 0 ° m w CD (7 i C 0 Cl) m � tD v m 3 CD 0 3 mV 11 it 3 m ° 3 PI• 0 C O C, O O OD O D S m c a n a y m II � o a p a O 7 n m O O R] � m 7. 7 A CD m a v N N II N P� O Q � O 1 0 1 z O o O CO N rI N O � N C_ = co C C > O N U d c a d 11 > } ca O ° o c m p W N c"! N o y m m 0 a C N O J d ° CD R , noo o v o J L N N N 11 N c N C Ca W v d o U p Lm o m C..t6+ O Q. 30 ° N(n N .2 q N 0�0M01f)� QOM 0 m O L N N N O ' N N M N a°N) N U 0 0 0 0 r N N t t E E E 0 0 �O - p N O N 0) C7 O 0 0 0 ° Cn p 'O c o N E U lV Q cl d > > > C O Ito 76 CO N L L1 N C6 N E V O N d U 0) OOO�O n CD NOO Uv ° Q Wrn cnU yor�cDOmwv o C� p \ ° \I co CQ 0)(D `t U.... r0D OON V In O V m Tx m O M M E O 3 C C_ 0) �a Cn 000000 0-0 CP E aD N- c-2 h II E E ca M C U N C)VVV L a O V V O L r O U O m rn co U U U E II II > N 70 CA N N N Q a) MOD000N� 010 O °o c'?Noo c (D 1 0 0 /�, E E d Inrnoccv VnM a U N M V' � O N N O C 'C o cu ° 00000 00 O H n O N > O 3 a ao �moi �m �� cn w ` C Trn II II II II p N i .� O ca '6 p m Q 1),I > rm< a � mo w °`o om000000000 ca C C a - ;6 co w MC LnC 7 N �M CO COOS .0 .0 �dx c �Oa` mina FL C) >° w � C C o N 01 ° rn i N E if C'4 a O c 'n -� G ° V U c 3 u =a Co Y 0 � > 0 U C C F' U � m � � O 3 O o E J 0 ° c a) O O o° a L O ° N V N co y J N U O V F' Cli N E U J J N 0 N L ; I I o d d OCOO� C O 0) CO ° C `p N N (D w O 10 O 1 . 00 II O R N O CJ 0 N () N o � � 0 11 d o 110 o y c m m o U v y N M J c 0) 0 0 � N N `o d w Lp II co '° O N d ° N E 0 N y , R O Cn 0) O cl U U) '� N N Q 7 co Cj U C> 3 a) co O U c 0 C CO CY 0- > N x� (6 j E E E C C 0 ( - O;t nO N E! EE v,� ° 'J 7 ° 0 L u o — N U 00 0 0 > O M N O (a�, M V Q N O ��Q � d d v u) Q T°o L L L EE . Nco N C C /� � CD C 7 E O C C_ O D W 0 V 3 u"r�� 4: EE = T(n OD a) N m 9 LL 11 > 00 CO 0 n op al ; 0 c o000 0 Uc 0 r da r N U W o IL N .0 w Oi C7 CV V NV N O a00 co co rax a dU > w O C 01 ° rn E o a O c 'n N G ° V U c 3 u U 0 � > 0 o F' m` o () J !0 N ` o E J 0 ° c a) O O o° a O ° o ° II co n o u M O U a) Z C at N O II M U V N Q a L ; 0 `c Yo O o CIO m 0 - M l0 l0 l6 rn ° °) ' O 1 . 00 II N CA L N _ O 11 o n l- O CJ 0 O� cc Z � � 0 11 d o 110 o F a 0 000 N v J c O p L 2 l6 t' oo CO N _ O O N M 0) U C w S 0) O c 03 O 0 O > � co 'a C C I� 1 I� N d) M O V > .O C > N x� d j E E E E h O O N ( - O;t I 3 d L ° 'J 7 C; Cn C; - 0 co Ua G ` L n N II O p OO (a�, M V cO d i O ��Q U � O d 0 V � L L L a) N co C) N C C /� � CD d porn N N O"t ° ( \ \ j 0 C M E O C C_ O D W 0 V 3 u"r�� t- - n`n EE CC N UN y N Co V a) ` �cD 00 CO 0 n _,p 0 0 V@ IJ L Q L � C., n n G N C j (0 N N N N Lt c U U a) 2 O N C z U N N CO D U U EU)� 11 II (a O (a co C c c c ° @ E E _ - •O N ` Q L N N M M O C V V 3 � — M in rn � • a N ° m C O m N m E M U U II I I II 11 O 2 00 O a O? 0) > nw> 3: tNOO°Dn 3 N M d' z� / N a � � �w LL E oo o 0 3 ,� arm o c in CD a`� C°D 0a` mina EU 0 C ° rn E O � G ° U U o U o O N ` F ° J O Ym E 0 o 0 co o o a) w O O II T O O II M U N c n CA C N .�. O Q N CA L N _ O _ 3 O J U O w O cc M i0 l0 ° 0 � E 0 OD U j m II n 0 ° N Ol ° N N ' Co ' t- w(DO v m d d oorn O O _ L s 6o 0) N ° U C w S 0) O c U O) CA l0 p L w X O R U) ` O n -aa)- co 11 d 0 III 0 rnoUN m 0 m; m R Uv Ua G S L n N II O p y cO E E o wE 0�= ym L N Zoo >> �W C O o as 0 d porn N N O"t a p O N O b O@�` l6 E O D W 0 N N d(n C °` .6 .O Cn 7 O a) 00 U fn O p tO O N v CC E L L Cn Q N 4; 1t,: U V : N tD II II C w G _,p 0 0 N N 't E N l6 a) V C j a0 C7 J C U N O W O CA �- O O h U U a) 2 O U N N l0 (a O tY O U N M N /��/�� •O N ` Q L U O O U M V V w — M O M 42 m E M U U co Ci ° a ) , II II Q 2 00 O xo c! co O c_ — o V G EE tNOO°Dn 3 N M d' N �C o °yji0 CI) in CD O N () v > C°D N O� C o C N C N C E d II II p W d 3 02 m a) aw> � 3 c o00 ZU a oo° ° ° CD ° L6 (6 # II O O — 7� N �C > > � C C at d co d� EO a CL C >° W 4E v 3 I I N O � O, N 1 1 O C ' 7 1 al r ' e� II O O m �n O m p N m N N p j 0 F 7 m �_ m O _ m W 0OD W wODo # G 7 f0 ,C 3 O O 1 # O (O CD fO C0 CD O) W mm < - C O N m co tO cn m aD ao m m 3 T 7 7 m m m d 3 m O) A N O 0 O) A N Ip m mm m .� D n� m A N O D) O) A N fD D O C7 j O o 0 0 0 0 0 0 0 0 0 o m c 0 0 0 0 0 00000 — : 0 5 0 0 0 o m N 0000000O m f <m,ff m <�0 �� ®nT ou d m m< n n n 11 T M. ao W,< m N D _ _ (n N m AO) �O m 7 fn N 7 ON = O m C O W to (n d£ `z C O y 7 CD OOOO OOOO m o »_7_ // AA V W 0000 000 n �' ° m O AWN 0 0 0 0 N D It Y m O D A b> (7 X A O V OO) N O m 3 O O O CO mmA tO(n o w m 3 3 O- NN CDC, O II OO)A -+OOD� N m D ASi y CD A ACT N N A B) > m N NCn O O O O » W < p m L A C 3 N V+ N m W N O G N Cl) A 01 S D 1G \tY 1G N O O f C N 3 m _ m O O OD N O- co W /N� O_ .Z m p 07 W m 33 II — NNNW C C> O W m fO7 OOOOO O OO (n m m S. > Cl O A \ a O I -, > N 0 0000000 ^O ?.N m _ N J .m. F O) A w- 000 fD a NAN W Av NO O -.. Nm D W (n SSS /� W O O NW OODN0 r a m 0) to co Of Ao0 N n A O J''-p ro 0 N 3 1CY tO O . W C) 07<00 fD C 0 63 C 0 A C CD m ' A S O ;D O N O D m O d W m d 0 7 < z M N y W Can C< p m 3 3 m m otno EE 0 ° G x G ' 3 m o m m Cn tD O o N W N N O N< < n N O C J; m0 V CD N 0 0 0000 R n A o m W II II II 3 3 W C n m to W tO .A N-+00 m m - "m O II I 0 Q )I CD -400)Nj00 N 0 0� o0 ODN D7 AONO .m. "` A 00 LJ O)��.. ONtO V E NO H m W VNW(T000 m N 3 O �S 0 0 O m'Or 0)W CO CD V(OO m O II N f m L1 ' V N W o m il II V V W 3 m It OD O fA r 3 0 O -4-4 O m m- n y e O) O ➢) m N W 03 O O r* a y m D cn O m :-4 O) D m to V W U) ° 5F N 7 a CD O W O O p 0 6 rL Q V 7 N m O m m ODA o 0 3 O C _ C m ro m d m m < < m O m m D) V 7 :D o m a m m 3 0 Z O N N � N 11 ID N O 00 V s e < O i II y 0 N o i c OLl mL� m 7 �O N 7 N 0 O o cm o N ° O a O m O A jp O -0 0 Ka ED H� ° 7 m � l< N 3 @ /� A O . < m \tY W O o 3 W S W O D m N c 3 W m m .yi C 7 C N m A W OD p O) N C_ p O O � _ y II 0 r OD m V O m O _ 0) N O 11 a < o zr 7 m o 3- O O O m ID m m n m 11 7 Zl o o m m g °O N "O N II m N P> CD O O � O mm m mmm m m m m mm mm mm =� m z A ME MR -01, / �� � i ,- _ �` VIII �1��11�1� � � � �%� � � ; , ��� Fig _,, I _ �[iiifli v iii �� ,, �� � _�_ 1111 ,� �,. oat ire. rill _�� . d,� , d� ®� II �II � IlI�� � ��' s,� ��IIII � 1111gi a All IN -� -- ��-�'� •.. /// WE - -- 1 IMP" 00.010 =. 121®Rk. IOWA,. �ti All P. Im r JD "D N ffilqg' ,,' 4 V lU .. ...... . .. .. 6 01 j!V1 ,. t ai :�t � ' � 1 \ �94J ?.....`��'.,`��� �, ��� �„ ,. P I ..... ..... - - - . ....... . . . ..... A-7 C) C) m Z I > m w m w m mm M m m m m m m m m m I Appendix B �J Model PS Urban Catchment Model, Version 3.4 Startup Case Case Data File Run Date 01/22!11 Case 12 -21 -10 test 110211 P8.p8c FirstDate 01/01/74 Precip(n) 627.1 Title Startup Case LastDate 12131194 Rain (in) 527.47 PrecFile Msp5095.pep Events 1539 Snow(n) 99.66 ParFle nurp50.p8p TotalHrs 183720 Totalyrs 20.96 Case Title Startup Case Case Data File 12 -21 -10 test 110211 PB.pBc Path L: Engineering 3D \110211 -Lyman Lennar\Hydrology Design \110211 PM Case Notes: Proposed Drainage Storm Data File Msp5095.pcp Particle File nuro50.nBn Time Steps Per Hour Minimum Inter -Event Time (hrs) Maximum Continuity Error % Rainfall Breakpoint (inches) Precipitation Scale Factor Air Temp Offset (deg -F) Loops Thru Storm File 4 10 2 0.8 1 0 1 Simulation Dates Start Keep Drainage 100 611/1973 1/1/1974 Max Snowfall Temperature (deg -f) SnowMeft Temperature (deg -f) Snowmeit Coef (in/degF -Day) Soil Freeze Temp (deg -F) Snowmen Abstraction Factor Evapo - Trans. Calibration Factor Growing Season Stan Month Growing Season End Month 32.0 32.0 0.06 32.0 1.00 1.00 5 10 AMC -II 1.40 0.50 AMC -III 2.10 1.10 Basin 300 Infil Basin 100 5-Day Antecedent Rainfall + Runoff (inches) CN Antecedent Moisture Condition Growing Season NonGrowing Season Watershed Data Watershed Name Drainage 100 Drainage 200 Drainage 300 POND POND POND INF_BASIN INF_BASIN INF_BASIN Runoff to Device Infiltration to Device Watershed Area Splitter 100 Splitter 200 Splitter 300 Basin 200 Splitter 200 Infil Basin 100 3 13.75 4.9 Splitter 200 Basin 100 Basin 200 Basin 300 Basin 100 SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Load Indirectly Connected Impery Fraction 74 74 74 1 1 1 1 1 1 1 1 0 0 0 0 0 0.09 0.05 0.13 0.04 0.01 0.18 0.51 0.25 UnSwept Impervious Fraction UnSwept Depression Storage (inches) UnSwept Imperv. Runoff Coefficient UnSwept Scale Factor for Particle Loads 0.15 0.17 0.13 0.25 0.02 0.02 0.02 0.68 1 1 1 0 1 1 1 0.36 0.19 0.52 0.26 Swept Impervious Fraction Swept Depression Storage (inches) Swept Imperv. Runoff Coefficient Swept Scale Factor for Particle Loads Sweeping Frequency Sweeping Efficiency Sweeping Stan Date (MMDD) Sweeping Stop Date (MMDD) 0 0 0 0.045 0.13 0.063 0.02 0.02 0.02 0.05 0.05 0.05 1 1 1 100 100 100 1 1 1 0 0.5 0.5 1 1 1 101 101 101 1231 1231 1231 Device Data Device Name Basin 100 Basin 200 Basin 300 Infil Basin 100 Infil Basin 200 Infil Basin 300 Splitter 10D Splitter 200 Splitter 300 Device Type Infiltration Outlet Normal Outlet Spillway Outlet POND POND POND INF_BASIN INF_BASIN INF_BASIN SPUTTER SPUTTER SPUTTER Basin 200 Splitter 200 Infil Basin 100 Infil Basin 200 Infil Basin 300 Splitter 200 Basin 100 Basin 200 Basin 300 Basin 100 Basin 200 Basin 300 Particle Removal Scale Factor Bottom Elevation (ft) Bottom Area (acres) Permanent Pool Area (acres) Permanent Pool Volume (ac -ft) Perm Pool Infin Rate (in /hr) Flood Pool Area (acres) Flood Pool Volume (ac -ft) Flood Pool Infin Rate (intho Infift Basin Void Fraction ( %) 1 1 1 1 1 1 0 0 0 0 0 0 0.01 0.04 0.01 0.18 0.51 0.25 0.18 0.51 0.25 0.47 1.89 0.68 0 0 0 0.269 0.734 0.36 0.19 0.52 0.26 1.28 4.25 1.87 0.045 0.13 0.063 0 0 0 0.05 0.05 0.05 1 100 100 100 Detention Pond Outlet Parameters Outlet Type I ORIFICE ORIFICE I ORIFICE n J 1 1 Particle Data 0 Particle File nurp50.p8p 13600 Particle Class Poly. P10% P30% P50% P80% Filtration Efficiency (°k) Settling Velocity (Who First Order Decay Rate (Ilday) 2nd Order Decay (1/day-ppm) 90 100 100 100 100 0 0.03 0.3 1.5 15 0 0 0 0 0 0 0 0 0 D Impervious Runoff Conc (ppm) Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs -ac -day) Particle Removal Rate (1 /day) Washoff Coefficient Washoff Exponent Sweeper Efficiency 1 0 0 0 0 1 100 100 100 200 0 1 1 1 1 0 1.75 1.75 1.75 3.5 0 0.25 0.25 0.25 0.25 0 20 20 20 20 0 2 2 2 2 0 0 0 5 15 Water Quality Component Data Component Name I TSS TP TKN CU PB ZN HC Particle Composition (mq /kq) PO% 0 99000 6.00000 13600 2000 640000 250000 P10% 1000000 3850 1.500D 340 180 1600 22500 P30% 10000DD 3850 15000 340 180 1600 22500 P50% P80% 1000000 3850 15000 340 180 1600 22500 1000000 0 0 340 180 0 22500 1 Content Scale Factor I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PB U1ben C tW- d Model, Verscn 3.4 Run Data 01?2711 Case 12 -21 -10 tast 110211 PBp& I't dDate OI9D1774 Precip(m) 627.1 Tills Stamp Caa Last0ate 12131/94 Rain(m) 527.47 PrecFk MsP5095.PCP E-W 1539 Snowfm) 99.66 ParIFBe nurp50.pBp ToInIHrs 16372D Totdy. 20.96 Mass Bst. -by Derive Device: OVERALL Type: NONE Flow Loswit's) Mass Balance Term a-ft PO% PID% P3D% P50% Pao% TSS TP TKN CU PB ZN HC Ot watershed inflows 286.52 778.76 1979805 19798.05 19798.05 39596.10 9899025 305.76 1358.17 44.25 19.38 593.44 2421.97 03 infitrete 11595 314.60 87220 119.54 29.08 7.70 1028.52 35.08 204.07 4.63 0.81 22.98 101.79 04 amftude 115.95 31.46 0.00 0.00 0.00 0.00 0.00 3.11 18.63 043 0.06 21.13 7.86 05 fbered 0 .OD 355.16 1095.61 149.94 3694 9.88 129237 41.09 238.33 541 0.95 235.76 121.37 06 romelaWat 170.57 376.78 7606.74 5991.42 335497 533.32 1752645 102.72 480.97 11.08 3.91 268.33 488.54 08 sMimen • d-Y O.OD 0.00 11053.36 13656.63 16406.13 3905289 80169.02 158.30 616.74 2726 14.43 65.79 1801,80 09totalmf.: 286.52 778.76 19798.05 19798.05 19798.05 39596.10 9899025 305.76 1358.17 4425 19.38 593.44 2421.97 10 SURace oumow 170.57 376.78 7646.74 599142 3354.97 533.32 17526.45 10272 480.97 11.08 3.91 268.33 488.54 1 1 Bfow outibw 11595 31.46 O.OD DOD 0.00 0.00 0.00 3.11 18.88 0.43 0.05 20.13 7.86 12 total outlkav 296.52 4DB.24 76,18 .74 599142 3354.97 53332 17526.45 105.84 499.84 11.51 3.97 288.46 496.41 13 total trapped 0.00 365.16 12148.97 13806.57 16443.07 3906277 81061.39 199.39 855.08 3266 15.39 301.54 192417 14 storage innease 0.DO 524 DOD 0 D O.OD 0.OD 000 D.52 3.14 007 0.01 3.35 1.31 15 mess balance check 0.DO 0.12 2.34 0.05 0.01 D. 240 D.02 0.11 D-00 0 D.08 DOB Load Real d ( %) D.DO 46.89 61.36 63.74 83.05 98.65 8229 652 1 SZ96 73.82 .45 79D.81 S 79.45 Device: Sp88a 100 Type: SPUTTER Fkrw L-Wbs) MaasBWrax Term acre -11 P096 Pt0% P3096 P50% Pao% T59 TP TKN CU PB ZN HC 01 watasMB inflows 38.99 105.96 271282 271282 271282 5425.64 13564.10 41.82 185.63 6.OS 265 50.84 331.68 O6 normal oMlet 38.99 105.96 2712.82 2712.82 2712.82 5425.64 13564.10 41,82 185.65 6.05 2.65 80.84 331.68 09 total inflow 38.99 105.96 271262 2712.82 271282 5425.64 41.82 185.65 6.05 2.65 80.84 331.68 IO Surface au6krw 38.98 105.96 2]1282 2]12.82 2]1282 5425.60 56 13564.10 134.10 41.82 185.85 6.05 2.65 80.84 331.68 12 total aMbw 38.99 105.96 2712.82 2712.82 271282 5425.64 13564.10 41.82 165.65 6.05 265 80.84 331.68 Load Redu ( %) 0.D0 DOD 0.00 O.OD 0.00 0.0D 0.00 O.OD ODD ODD DOD DOD 0.00 Device: Infd Basin 10D Type: INF_BASIN Flow Loeds(Ibs) Mass Balance Term -A PO% PIO% P3D% P50% Pao% TSS TP TKN CU PB ZN HC 02 upstream device 3899 105.96 2712.82 2712.82 271282 5425.64 13564.10 41.82 185.65 6.05 265 SON 331.68 03 Infant. 23.53 63.93 157.31 2194 528 1A0 111 1.04 41.11 0.83 0.16 4121 20.14 D4 eAttrate 23.53 639 000 O.OD 0.00 0.0D 0.00 0.63 3.84 DOD D01 409 1.60 OS fJ te20 0.00 57.54 157.31 21.94 5.28 1AD 184.92 6.40 3728 0.85 0.16 37.12 18.55 07 spiaway Mbt 1546 42.02 1413.98 1175.16 796.07 379.60 3764.82 17.19 75.99 1 a 0.76 3231 95.21 OBaaOfi- decay 0.00 0.00 1140.30 151663 1911A6 S(M.64 9613.08 17.59 68.53 327 1.73 7.31 21629 09 total inflr 38.99 105.96 2712.82 2712.82 2712.82 $425.64 13560.10 41.82 185.65 6.05 2.65 8084 331.68 10116114umow 15.46 4202 . 1413.98 1175.16 796.07 379.60 3764.82 17.19 75.99 1.85 0.76 3231 9521 11 gnd ouObw 23.53 6.39 O.OD 0.00 0.00 0.00 0.00 0.63 3.84 0.09 0.01 409 1.60 121de1 outilov 38.99 48.41 1413.98 1175.16 796.07 379.60 3764.62 17.83 79.83 1.94 0.77 36.40 96.81 13 total trapped DDO 57.54 1297.61 1537.61 1816.74 5046.03 9798.00 23.99 105.80 4.11 1.88 44.43 234.84 14 MD.9e "- DOD 0.00 DOD 0.00 0.00 0.00 0.00 D. O.OD 0.00 0.00 0.00 0.0D 15 mass balance check 0.00 0.01 123 0.04 0.01 0.00 128 0.01 D.03 0.00 ODD D.01 0.D3 Load Reduction ( %) DOD 54.30 47.83 56.68 70.66 93.00 7223 57.36 56.99 67.98 70 BD 54.96 70.80 Device: Basin 1DD Type: POND Flow Losds(lbs) Mass Balance Tenn acre -R PO% P10% P3D% P50% PBO% TSS TP TKN CU PS ZN HC 02 upstream deuce 15.46 4202 141398 1175.16 79507 379.80 3764.82 17.19 75.99 1.85 0.76 3231 95.21 06 _I Wid 15.46 40.74 1010.93 786.80 385.01 39.10 2221.74 1244 57.18 1.31 0.48 29.56 60.17 08 seamen. decay DOD 0.OD 401.ls 388.36 411.05 340.61 1543.08 4.63 18.04 0.52 028 1.92 34.72 09 total hill- 15.46 42.02 141396 1175.16 79607 379.0 3764.82 17.19 75.93 1.85 0.76 3231 9521 10 wdace oUmm 15.46 40.74 1010.83 786.81) 385.01 39.10 2221.74 12 44 57.18 1.31 0.48 29.56 60.17 12 total autibw 15.46 40.74 1010.83 786.80 385.01 39.10 2221.74 12.44 57.16 1.31 0.4B 29.56 60.17 131otal Dapped 0.00 D. 403.15 388.36 411.05 340.51 1543.08 4.63 18.D4 0.52 028 1.92 34.72 14 stmeq. lncreaa 0.00 1.26 0.00 0.00 0 D ODD 0.OD 0.12 0.76 D.02 0 D 0.81 D.31 15 mess balance check 0.00 002 0.00 0.00 O.OD 0.00 O.DD 0.00 0.01 0.00 0.00 0.01 DOI Load Radudon ( %) 0.00 0.00 28.51 33.05 51.64 89.70 40.99 26.93 23.74 28.34 36.46 5.96 36.46 Device: Spitler 3DO Type: SPUTTER Flow LcedaPbs) Mast Balance Tam .-41 PD% PID% P30% P50% PBO% TSS TP TKN CU PS ZN HC D1 waletshed inflows 60.98 165.74 4319.51 4319.51 4318.51 8639.03 21597.57 56.30 293,82 9.60 4.22 126.81 527.38 D6 -1 ou lat 6098 165.]4 4319.51 4318.51 4318.51 0639.01 21597.57 66.30 293.82 BBD 422 126.81 527.38 M iami infix 60.98 165.74 4319.51 431111 431111 8639.03 21597.57 66.3D 293,82 9.63 4.22 126.81 527.38 f0 surtax outlbw 60.98 185.74 4319.51 4319.51 4319.51 8639.03 21597.57 66.30 293.82 9.60 4.22 126.81 527.38 12 total outflow W98 165.74 0319.51 63319.51 0.118.51 8639.03 21597.57 66.30 293.82 9.60 421 126.81 527.38 Load Reduction ( %) 000 0.00 0.00 MOD O.OD 0.00 0.00 DOD 0.00 0.00 0.00 O.OD 0.00 Da0m: Infil Basin 300 Type: INF BASIN Flvw Loads(Ibs) Mass Balance Tam .-ft PO% P10% P30% PSD% P8D% TSS TP TKN CU PB ZN HC 02 upstream device 60.98 165.74 4319.51 4319.51 4319.51 8639.03 21597.57 66.30 293.82 9.60 4.22 126.81 527.38 03 mOmale 33.53 91.14 223.41 30.40 7.87 218 26386 10.03 58.61 1.33 023 56.75 28.72 04 eNBrate 33.53 9.11 DOD 0.00 0.OD 0.00 O.OD 0.90 5.47 0.12 0.02 5.83 228 05 filleted 0.00 82.02 223.41 3D.40 7.87 218 263.86 9.13 53.14 121 027 5291 26.44 07 spRWq o dM 27.45 74.60 2475.77 2089.42 1469.03 758.59 679281 30.62 13527 3.32 1.37 57.40 171.49 dinen 08 se • decay 0.00 0.00 161923 2199.68 284262 787825 14539.79 25.65 99.92 4.94 2.62 10.63 327.75 09 total inf krn 60.98 165.74 4319.51 4319.51 4319.51 6639.03 21597.57 66.30 293.82 9.60 4.22 126.81 527.38 10 surtaos Daub- W. 83,71 2475.77 2089.42 1469.03 758.59 6792.81 31.52 140.74 345 1.39 63.23 173.77 12 total ouM- 60.98 83.71 2475.77 2089.42 1laa,03 758.59 6792.61 31.52 140.74 3.45 1.39 6323 173.77 13totalLapped O.DO 52.02 1842.64 2230.08 2850.48 7880.44 14803.64 34.77 153.06 6.15 2.83 6357 353.59 14 storage It- ln O.OD 0.Do O.00 O.OD 0.00 0.00 0.00 DOD 0.OD 0.00 DOD 0.00 0.00 15 mess balmw check 0.00 0.00 1.11 0.01 0.00 0.00 1.12 0.00 0.02 0.00 0.00 0.00 0.03 Lord Reduction (%) 0.00 4949 42.66 51.63 65.99 91.22 68.54 52.45 5209 64,07 67.05 50.13 67.05 Device: Basin 30D Type: POND Fkm Loadt(MS) Mass Balance T- -ft PM P70% P30% P5D% P8D% TSS TP TKN CU PB ZN HC O2 upstream deuce 27.45 74.60 2475.77 2089.42 1489.03 75B.59 6792.87 30.62 13527 3.32 1.37 57.40 171.49 dn 06 nal od t 27.45 72.76 1801.84 1393.06 676.57 67.66 3939.13 22.11 1 O 13 233 0.85 5276 106.82 63 admen. decay 0.OD ODD 6!•3.93 696.36 792.46 69093 2851.67 8.33 32.44 0.97 0.51 3.46 64.21 09latal infl- 27.45 74,60 2475.77 2089.42 1469.03 758.59 679281 30.62 13527 3.32 1.37 57.40 171.49 10 enlace outflow 27.45 72 76 1801.84 1393.05 676.57 67.66 939 3.13 22.11 101.73 2.33 0.85 5276 106.82 72lota outflow 27.45 72.76 1801.84 1393.06 676.57 67.66 3939.13 22.11 101.73 2.33 0.85 5276 106.82 13 total napped OOD D.00 673.93 696.36 792.46 690.93 2853.67 8.33 32.44 0.97 0.51 346 6421 14 storage increase ODD 1.81 0.00 0.00 0.00 0.00 O.DD 0.18 1.08 0.02 0.06 1.16 045 15 -balanceU Jc 0.00 0.N ODD O.OD 0.00 D.00 0.00 0.00 0.02 O.DD 0.00 0.02 O.DI Load Reduction ( %) 0.00 0.00 2722 33.33 53.94 91.08 4201 27.20 23.98 29.19 37.44 6.03 37.44 Device: Spldler 200 Type: SPUTTER Flow Loads(Ibs) Mass Balance Term aer" PD% P10% P30% P5D% P.% TSS TP TKN CU PB ZN HC 01 waershal inflows 186.56 507.06 12765.72 12765.72 12765.72 25531.43 63828.58 197.64 878.69 28.60 12.50 385.79 156291 02 upstraam device 27.45 7276 1801.84 1393.05 676.57 67.66 3939.13 2211 101.73 2.33 0.85 5276 106.82 06 -1 outlet 214.00 579.82 14567.56 14158.77 13442.29 25599.09 67767.71 219.75 980.42 30.93 13.36 438.56 1669.73 09 tail inflow 21400 579.82 14567.56 14158.77 1344229 25599.03 67767.71 219.75 980.42 30.93 13.36 438.56 1669.73 10 unlace outflow 214.06 579.82 14567.56 1415877 1344219 25599.03 67767.71 219.75 580.42 30.93 13.36 43856 1669.73 12 trial odllow 214 DD 579.82 14567.56 14158.77 134422] 25599.09 67767.71 219.75 980.42 30.93 13.36 438.56 1669.73 15 tress balance cl At 0 W D.00 OOD 0.00 0.00 ODD 0.00 0.00 0.00 0.00 0.00 O.OD 0.D0 Load Reduction ( %) 0. 0.00 O.OD 0.06 0.00 0.00 O.OD 0.00 O.DD 0.. O.OD 0.00 O.OD Device: In81Basin 2DO Type: INP BASIN Flaw Loads(ft) Mass Salarce Tenn acreR PD% P10% P30% PSD% P.% T TP TKN CU PB ZN HC 02 upstream device 214.DD 579.82 1456756 14158.77 1344229 25599.09 6767.71 21915 980.42 30.93 13.36 43856 1669.73 03Infiltrate 9242 250.67 714.89 98.60 23.80 6.30 843.59 28.04 16296 3.70 D.65 161.77 81.65 D4 eicliLate 9242 25.07 0.OD O.DD 0.00 0.00 0.06 248 15.04 0.34 0.06 16N 6.27 fm 05 aW 0.. 225.. 714.89 98.60 23.. 6.30 843.59 25.56 147.92 3.36 0.61) 145.72 75.38 07 spilway outlet 121.58 329.15 569254 6947.62 48.78.83 2863.. 2336258 11143 504.68 7242 4.86 243.42 6D7 95 OB s d-n . d.M O00 000 5160.13 711255 8579.61 2Z70919 43561.53 80.28 31279 14.81 7.84 33.36 980.13 09 total unflow 214.DD 579.82 14557.56 14158.77 1344229 25599.09 67767.71 219.75 980.42 30.93 13.36 43856 1669.73 10sulaceoutllow 121.56 329.15 8692.54 6947.62 -a.8a 2883.. 23352.50 11161 504.88 1242 4.86 24x.42 607.95 1l '-- """*w oow 9242 25.07 0.06 ODD 0.00 0.00 0.06 2 .48 15.04 34 0.5 0.0 16.04 627 12 total ot"M 214.00 354.22 8692.54 6947.62 4838.83 28B3 BD 2336258 11391 519.72 1276 491 25947 614.21 13 fait trapped 0.00 225.. 5875.02 7211.15 860346 2271549 44405.13 10584 460.71 18.17 8.44 179.09 1055.52 14 sto1age InOeasa 0.06 a W 0.00 0.06 0.. 0.00 0.00 0.. O.OD 0.00 0.06 000 O.DD 15 tress balance check ODD D.DO 0.. 0.06 0.. 0.00 0.OD O.OD D.Do 0.00 0.06 0.06 ODD Load Reduclbn ( %) ODD 38.91 40.33 06.93 64.00 88.74 65.53 48.16 46.99 58 .74 6321 40.84 6321 Device: Basin 200 Type: POND Flow Loads( @s) Mass, Balance Tams -ft PD% P10% P30% P50% P80% TBS TP TKN CU PB ZN HC 02 upstream device 155.11 338.27 869254 6947.62 4838.83 288380 23362.58 11233 510.14 12.54 4.88 24926 610.22 no-al noal ouOel 155.11 336.04 6635.91 52D4.62 2868.95 494.23 7S3D4.71 9029 423.78 9.77 343 238.77 428.37 M sedimao• -Y 0.00 ODD 2056.63 1743.00 1868.87 2389.37 8D57.87 2182 85.03 274 145 9.07 181.30 09 total inflow 155.71 330.27 869254 8947.62 4838.83 2863.60 23352.58 112.33 510.14 1254 4.88 24926 61022 10 solace outflow 155.11 336.04 6635.91 5204.62 2969.95 494.23 15304.71 ..29 423.78 9.77 3.43 238.77 428.37 12tolal oulllow 155.11 336.D4 663.5.91 5204.62 2969.95 494M 1530471 9D.29 423.78 9.77 3.43 238.77 428.37 13lotal trapped MOD 0.00 20%.63 1743.DD 1BBB.87 2389.37 8057.87 21.82 85.03 274 1.45 9.07 181.30 14 storage lnereawe 000 217 O.DD 0.06 0. 0.06 O.OD 021 1.30 0.03 DOD 1.39 0.54 15- -balarce check 0.00 0.05 0.00 D.00 OW D.00 0.00 0.00 0.03 0.06 0.. 0.03 0.01 tred Reduction ( %) 0.00 0.00 23.66 25.09 38.62 82.85 34.49 19.43 16.67 21.84 29.71 3.64 29.71 Appendix C I Storm Sewer Conveyance 7I L Design n 1 J n n n n n n n 0 n n n co n I7 n W W W W t7 W n n W W W W W W W� 2 0 W W W W W 2 2 m to - D IL s 2 2 2 2 2 s 2= 2 2 2 2 2 i y n co V O 07 W O CD W V W CA A m Z �* D � 4k -- co - O 0 A CD N O N A N s V O N W W N� . 01 -4 W; m 4k to O 01 i N 0° A <D W W tl1 A N O W A O N tD V N V O O O D co O co O w000000000- 1000OOOOOOO m 61 w A W N A N O N s O O W A 00 tT CA A t0 V tD O) m V A s W 00 CD W N Q1 O O O O O D N CD N W O tD A (n A CO CD tD W CT 0 0 0 CD O O � O Q- C, O O Cn O O (D O � � CD O N m m 0 A w O 0 A 01 A O V N O -• j tD m W V W N W N m W P OD A a W w° N ao A tD N C O C ,p tD V •.a CO V o V CD m W O 01 W at V (A CO 0 0 0 D ;a v m o D v, z A A A V A W AP- A W W to V M M 0 0 0 N in W tV CO CO to A M M V V V W CO N C) t31 D- A --4 A J CO Cn A rJ CO CD V M O O D D o co N) 0 N) t o N O CO o N ° O 0 N O o o (D 0 N C CD CD W N 0 W V 0 0 A N W 01 tD V 0 N W . C A o co °° w G o° O O o O 0 A 0 V 0 O 0 W 0 W 0 A 0 V 0 O 0 p 0 00 0 0 0 0 0 0 o m m m O CD ° ° ° ° ° 0 C C C C 0 0 0 ° 0 C D Z U1 C, (P N Ui W (n CJi (T co CD O 0, A N W W O 0 0 D V A d1 �I : a1 O A CT W W N N N 8 N tD p O V 0 A Ctt Ut N t3� W --• A C V CD N N c O 0 O o o O o , Oo C o ° m m 0 O° o t o Co t o c o tD n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N v CD G m D= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o is 0 01 01 it O M s 0-4 w m M w M A 0 O W W A a w a w M w is O -4 m -4 m o O 0 O o O r C m m n 0 D 0 o ' 0 3 W 1 m O m z O 3 G 1 - D 0 N o nco�m m CD Q T z m A 0 3 r z m O n o � 1 0 z n D m m C7 D c z 0 0 m z " n 0 m z 1 0 c 3 1 0 F-n 0 O ny -umi O O z m A C� O z O 3 G - D c nco�m m z m A 1 m 3 z 0 C � m 1 m v Z �{ Z-4 0 1 N w a) 17 3 U) Z 0 0 II c 0 D D 3 O 0-0 m m v m v z z T c F. r rl m z O 1 x �I 3 z < m 1 z m 1 v C O T m WI c v 0 O m W c r v 0 0 m A v m v G) z 0 0 3 m m z 1 rn = m m m m m = M = = = m = = m m = = = O O 1 1, 011 , > ... . .. ....... . . . ...... ..... . . ... ...... A . ..... .... . . . . . . . . . . . . I.- ....... ... ... . .... . .......... .. . . ...... ... . .... . .. .... .. O z - 0 > 11 rl z .......... m Z .... ....... Or ....... ... . .................. . . ...... .. .... . . . . . . . . . . . . .... ... ......... ........... . ......... A .. . ................ ......... .......... . . ........ ........... . ...... YM :BLV W fill oil O O 1 1, 011 , > ... . .. ....... . . . ...... ..... . . ... ...... A . ..... .... . . . . . . . . . . . . I.- ....... ... ... . .... . .......... .. . . ...... ... . .... . .. .... .. O z - 0 > 11 rl z .......... m Z O O 1 1, 011 , > ... . .. ....... . . . ...... ..... . . ... ...... A . ..... .... . . . . . . . . . . . . I.- ....... ... ... . .... . .......... .. . . ...... ... . .... . .. .... .. O z ........ . ... .. .... . . ................ O C) - 0 > 0 --i z .......... m Z .... ....... Or ....... ... . .................. . . ...... .. .... . . . . . . . . . . . . .... ... ......... ........... . ......... A .. . ................ ......... .......... . . ........ ........... . ...... YM :BLV ........ . ... .. .... . . ................ O C) - 0 > 0 --i z C) m Z --I 0 > 1 r 1 Appendix D Supporting Documents F1 L F1 PONDSIZ - Version 2.1 - W. Walker 110211- Basin 100 INPUT VARIABLE UNITS VALUES watershed area acres 13.66 = design storm runoff volume pervious curve number - acre -ft 75 from SCS tables, for AMC =2 impervious fraction - 0.16 VLAWMO criterion >= 4 feet design storm inches 2.5 VLAWMO criterion = 2.5 inches antecedent moisture cond. design storm runoff 2 (1,2,or 3), VLAWMO criterion = 2 pond maximum depth feet 10 <= loft bench width be feet 10 >= 10 ft bench slope be ft/ft 10 >= 10 ft horiz / ft vertical side slope ab ft/ft 3 >= 3 ft horiz / ft vertical pond shape factor 88.00 21 1= triangle,2= rectangle,3= ellipse length /width ratio - 2.00 >= 3 top length c feet 176 1 adjust to achieve target volume OUTPUT VARIABLE UNITS VALUE target volume acre -ft 1.08 = design storm runoff volume design volume acre -ft 1.08 should be >= target volume design mean depth feet 3.03 VLAWMO criterion >= 4 feet design surface area acres 0.36 pond / watershed area = 2.6% design storm runoff inches 0.95 runoff coefficient = 37.9% I maximurn retention I inches 1 3.33 1 for pervious portion of watershed CONTOUR DIMENSIONS Case = 110211- Basin 100 Design Geometry = RECTANGLE TOP BENCH BOTTOM contour C B A TOTAL elevation feet 0.00 -1.00 -10.00 depth feet 0.00 1.00 10.00 10.00 maximum length feet 176.00 136 28.00 176.00 maximum width feet 88.00 68.00 14.001 88.00 surface area feet ^2 15488 9248 392 15488.00 surface area acres 0.36 011 0.01 0.36 increm. volume feet ^3 12234.67 34632.00 46866.67 increm. volume yd ^3 453.14 1282.67 1735.80 increm. volume ac -ft 0.28 0.80 1.08 centroid offset ft 0.00 10.00 37.00 outflow slope leng. ft 10.00 27.00 inflow slope length ft 30.00 81.00 outflow slope be ft -h /ft -v 10.00 3.00 inflow slope ab ft -h /ft -v 30.00 9.00 PONDSIZ - Version 2.1 - W. Walker F U U LJ 7 110211- Basin 200 INPUT VARIABLE UNITS VALUES watershed area acres 2.86 = design storm runoff volume pervious curve number - acre -ft 75 from SCS tables, for AMC =2 impervious fraction - 0.17 VLAWMO criterion >= 4 feet design storm inches 2.5 VLAWMO criterion = 2.5 inches antecedent moisture cond. design storm runoff 2 (1,2,or 3), VLAWMO criterion = 2 pond maximum depth feet 7 <= 10 ft bench width be feet 10 >= 10 ft bench slope be ft/ft 10 >= 10 ft horiz / ft vertical side slope ab ft/ft 3 >= 3 ft horiz / ft vertical pond shape factor 80.00 1 1= triangle,2= rectangle,3= ellipse length /width ratio - 2.00 >= 3 top length c feet 1 160 1 adjust to achieve target volume OUTPUT VARIABLE UNITS VALUE target volume acre -ft 0.23 = design storm runoff volume design volume acre -ft 0.26 should be >= target volume design mean depth feet 1.80 VLAWMO criterion >= 4 feet design surface area acres 0.15 pond / watershed area = 5.1% design storm runoff inches 0.961 runoff coefficient = 38.6% maximum retention inches 3.33 1 for pervious portion of watershed CONTOUR DIMENSIONS Case = 110211- Basin 200 Design Geometry = TRIANGLE TOP BENCH BOTTOM contour C B A TOTAL elevation feet 0.00 -1.00 -7.00 depth feet 0.00 1.00 7.00 7.00 maximum length feet 160.00 108.7689437 16.55 160.00 maximum width feet 80.00 54.38 8.28 80.00 surface area feet ^2 6400 2957.670781 68.50080386 6400.00 surface area acres 0.15 0.07 0.00 0.15 increm. volume feet ^3 4569.48 6952.57 11522.05 increm. volume yd ^3 169.24 257.50 426.74 increm. volume ac -ft 0.10 0.16 0.26 centroid offset ft 0.00 15.62 43.72 outflow slope leng. ft 10.00 18.00 inflow slope length ft 41.23 74.22 outflow slope be ft -h /ft -v 10.00 3.00 inflow slope ab ft -h /ft -v 41.231 12.37 PONDSIZ - Version 2.1 - W. Walker 7 I J 1 J 110211- Basin 300 INPUT VARIABLE UNITS VALUES watershed area acres 5.65 = design storm runoff volume pervious curve number - acre -ft 75 from SCS tables, for AMC =2 impervious fraction - 0.14 VLAWMO criterion >= 4 feet design storm inches 2.5 VLAWMO criterion = 2.5 inches antecedent moisture cond. design storm runoff 2 (1,2,or 3), VLAWMO criterion = 2 pond maximum depth feet 7 <= 10 ft bench width be feet 10 >= 10 ft bench slope be ft/ft 10 >= 10 ft horiz / ft vertical side slope ab ft/ft I 3 >= 3 ft horiz / ft vertical pond shape factor 68.00 2 1= triangle,2= rectangle,3= ellipse length /width ratio - 2.00 >= 3 top length c feet 136 1 adjust to achieve target volume OUTPUT VARIABLE UNITS VALUE target volume acre -ft 0.43 = design storm runoff volume design volume acre -ft 0.43 should be >= target volume design mean depth feet 2.04 VLAWMO criterion >= 4 feet design surface area acres 0.21 pond / watershed area = 3.8% design storm runoff inches 0.91 runoff coefficient = 36.4% I maximurn retention I inches 1 3.33 1 for pervious portion of watershed CONTOUR DIMENSIONS Case = 110211- Basin 300 Design Geometry RECTANGLE TOP BENCH BOTTOM contour C B A TOTAL elevation feet 0.00 -1.00 -7.00 depth feet 0.00 1.00 7.00 7.00 maximum length feet 136.00 96 24.00 136.00 maximum width feet 68.00 48.00 12.00 68.00 surface area feet ^2 9248 4608 288 9248.00 surface area acres 0.21 0.11 0.01 0.21 increm. volume feet ^3 6794.67 12096.00 18890.67 increm. volume yd ^3 251.65 448.00 699.65 increm. volume ac -ft 0.16 0.28 0.43 centroid offset Ift 0.00 10.00 28.00 outflow slope leng. Ift 10.00 18.00 inflow slope length ft 30.00 54.00 outflow slope be ft -h /ft -v 10.00 3.00 inflow slope ab ft-h /ft-v 30.00 9.00 1 1 1 1 1 1 1 1 1 1 1 1 Geotechnical Evaluation Report Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota Prepared for lennar Corporation Professional Certification: I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. 1 A I M /��� (,/ / /�� •<o�`�`e 0 , Henry OS Henry Vloo, PE rya HENRY Associate —Senior Engineer 5.' 6W = s o 211 o d. License Number: 21140 ;✓ftp e •+ ��` December 2, 2010 ° %, ®A0 ®•,,••� �ti aQ+.y Project BL- 10-09747 Braun Intertec Corporation BRAUN INTERTEC December 2, 2010 Mr. Joe Jablonski Lennar Corporation 935 Wayzata Boulevard East Wayzata, MN 55391 Re: Geotechnical Evaluation Proposed Residential Development Lyman Boulevard and Riley Lake Boulevard Chanhassen, Minnesota Dear Mr. Jablonski: Braun Intertec Corpara6on Phone: 952.995.2000 11001 Hompshire Avenue 5 Fax 952.995.2020 Minneapolis, MN 55438 Web: brouninieNec.com Project BL -10 -09747 We have completed our geotechnical evaluation for the proposed single - family residential development northwest of Lyman Boulevard and Riley Lake Boulevard in Chanhassen, Minnesota. The purpose of our geotechnical evaluation was to assist you and your design team in evaluating the subsurface soil and groundwater conditions with regard to site grading and foundation support for the proposed homes, streets, and underground utilities within this proposed development. Please consult the attached report for details on our field and laboratory test results and our recommendations and conclusions. Thank you for making Braun Intertec your geotechnical consultant for this project. If you have questions about this report, or if there are other services that we can provide in support of our work to date, please call Henry Vloo at 952.995.2238 or Gregg Jandro at 952.995.2270. Sincerely, BRAUN INTERTEC CORPORATION V Henry Z I o, PE Associate- Senior Engineer Gregg . Jandro, PE, PG Principal Engineer, Vice President C: Mr. Nick Polta; Pioneer Engineering Providing engineering and environmental solutions since 1957 I Table of Contents ' Description Page A . Introduction .......................................................... . ............................................................. I.............. 1 A .1. Project Description .............................................................................. ............................... 1 A.2. Purpose ................................................................................................. ..............................1 ' A.3. A.4. Background Information and Reference Documents .......................... ............................... 1 Site Conditions ..................................................................................... ............................... 1 A.5. Scope of Services .................................................................................. ..............................1 ' B. Results.......... 6.1. ............. Exploration Logs. 2 rati ................................................................................... ..............................2 B.1.a. Log of Boring Sheets ............................................................... ............................... 2 B.l.b. Geologic Origins ...................................................................... ............................... 2 ' B.Z. Geologic Profile .................................................... ............................... B.2.a. Geologic Materials ...... . .............. . ............. ........................ ...................................... 3 ' B.2.b. Groundwater ............................:............................................. ............................... 3 B.3. Laboratory Test Results ....................................................................... ............................... 3 ' C. Basis for Recommendations ............................................................................. ...... .......................... 4 C.1. Design Details ...................................................................................... ............................... 4 C.1.a. Building Structure Loads ......................................................... ............................... 4 ' C.1.b. Pavements and Traffic Loads .................................................. ............................... 4 C.1.c. Anticipated Grade Changes .................................................... ............................... 5 C.1.d. Precautions Regarding Changed Information ........................ ............................... 5 ' C.2. C.3. 'Construction Design Considerations ......................................................................... ............................... 5 Considerations ............................................:.................. ............................... 6 D Recommendations ............................................................................................. ..............................6 ' D.1. House Pad and Pavement Subgrade Preparation ............................... ............................... 7 D.1.a. Excavations .............................................................................. ..............................7 D.1.b. Excavation Dewatering ........................................................... ............................... 7 ' D.1.c. Selecting Excavation Backfill and Additional Required Fill ..... ............................... 8 D.1.d. Placement and Compaction of Backfill and Fill ...... 8 ................ ............................... ' D.2. Spread Footings ................................................................................. ............................... 10 D.2.a. Embedment Depth ............................................................... ............................... 10 D.2.b. Subgrade Improvement ........................................................ ............................... 10 D.2.c. Net Allowable Bearing Pressure ........................................... ............................... 10 D.2.d. Settlement .......................... D.3. Basement Walls ................................................................................. ............................... 11 D.3.a. Drainage Control ..................................................................... .............................11 ' D.3.b. Selection, Placement and Compaction of Backfill ................ ............................... 11 D.3.c. Configuring and Resisting Lateral Loads ..................................... I ................... I.... 12 Table of Contents (continued) Description Page D.4: Interior Slabs... ..................................................................................... ............................. Appendix Boring Location Sketch Log of Boring Sheets, Borings ST -1 through ST -10 Descriptive Terminology � ► l INTERTEC D.4.a. Moisture Vapor Protection ..................................................... .............................13 DA.b. Radon ...................................................................................... ............................. D.5. Exterior Slabs ........................................................................................ ............................. D.6. Pavements ........................................................................................... ............................. D.6.a. Subgrade Proof - Roll ................................................................. ............................. D.6.b. Design Sections ....................................................................... .............................15 D.6.c. Materials and Compaction ..................................................... .............................15 D.6.d. Subgrade Drainage ................................................................. .............................1 D.7. Utilities ................................................................................................. ............................. D.7.a. Subgrade Stabilization ............. ............................... ........... .............................16 D.7.b. Selection, Placement and Compaction of Backfill .................. .............................16 D.S. Construction Quality Control ............................................................... .............................16 D.8.a. Excavation Observations ........................................................ .............................16 D.8.b. Materials Testing...... ............................................................... .............................16 D.8 .c. Pavement Subgrade Proof - Roll ...::::....... . .. D.8.d. Cold Weather Precautions ...................................................... .............................17 E. Procedures .......................................................... ............................... .......... .............................17 E.I. Penetration Test Borings ..........:.......................................................... .............................17 E.2. Material Classification and Testing ...................................................... .............................17 E.2.a. Visual and Manual Classification ............................................ .............................17 E.2.b. ' Laboratory Testing .................................................................. .............................17 E.3. Groundwater Measurements ........:..................................................... .............................17 F . Qualifications .........................:.......................................................................... ............................. F.1. Variations in Subsurface Conditions .................................................... .............................18 F.1.a. Material Strata ........................................................................ .............................18 F.1.b. Groundwater Levels ................................................................ .............................18 F.2. Continuity of Professional Responsibility ............................................ .............................18 F.2.a. Plan Review ............................................................................. .............................18 F.2.b. Construction Observations and Testing ................................. .............................18 F.3. Use of Report .............................:......................................................... ............................. F.4. Standard of Care .................................................................................. ............................. Appendix Boring Location Sketch Log of Boring Sheets, Borings ST -1 through ST -10 Descriptive Terminology � ► l INTERTEC I A. Introduction I A.I. Project Description A single - family residential development is planned for the northwest quadrant of Lyman Boulevard and Riley Lake Boulevard in Chanhassen, Minnesota. A.Z. Purpose ' Available aerial photographs showing the existing site features and structures. ■ Geologic atlas showing the general soil types in this area. A.4. Site Conditions The site of the proposed residential development currently consists of open farm fields with some ' wetlands and wooded areas. A ditch and precast concrete mat are present near the center and west portions of the site. I A.S. Scope of Services Our scope of services for this project was originally submitted October 29, 2010 as a Proposal to Mr. Joe Jablonski of Lennar Corporation for a Geotechnical Evaluation. We received authorization to proceed from Lennar Corporation on November 1, 2010. Tasks performed in accordance with our authorized scope. of services included: 1 The purpose of our geotechnical evaluation was to assist you and your design team in evaluating the ' subsurface soil and groundwater conditions with regard to site grading and foundation support for the proposed homes, streets, and underground utilities within this proposed development. A.3. Background Information and Reference Documents To facilitate our evaluation, we were provided with or reviewed the following information or documents: ■ Existing conditions site concept plan showing he existing conditions and topography. g g ' Available aerial photographs showing the existing site features and structures. ■ Geologic atlas showing the general soil types in this area. A.4. Site Conditions The site of the proposed residential development currently consists of open farm fields with some ' wetlands and wooded areas. A ditch and precast concrete mat are present near the center and west portions of the site. I A.S. Scope of Services Our scope of services for this project was originally submitted October 29, 2010 as a Proposal to Mr. Joe Jablonski of Lennar Corporation for a Geotechnical Evaluation. We received authorization to proceed from Lennar Corporation on November 1, 2010. Tasks performed in accordance with our authorized scope. of services included: 1 Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 2 ■ coordinating the clearing exploration locations of underground utilities. (The boring locations were chosen and staked in the field by Pioneer Engineering.) ■ Performing 10 penetration test borings to nominal depths of 20 feet deep. .. ■ Performing laboratory tests on selected soil samples. ■ Preparing this report containing a boring location sketch, exploration logs, summary of the soils and groundwater encountered, results of laboratory tests, and recommendations for subgrade preparation and the design of the proposed residential development. B. Results 13.1. Exploration Logs B.1.a. Log of. Boring Sheets Log of Boring sheets for our penetration test borings are included in the Appendix. The logs identify and describe the geologic materials that were penetrated, and present the results of penetration resistance tests performed within them and laboratory tests performed on penetration test samples retrieved from them, and groundwater measurements. Strata boundaries were inferred from changes in the penetration test samples and the auger cuttings. Because sampling was not performed continuously, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may also occur as gradual rather than abrupt transitions. B.1.b. Geologic Origins Geologic origins assigned to the materials shown on the logs and referenced within this report were based on: (1) a review of the background information and reference documents cited above, (2) visual classification of the various geologic material samples retrieved during the course of our subsurface - exploration, (3) penetration resistance data, (4) laboratory test results, and (5) available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past. BRAUN INTERTEC ' -- - - - - -- ' Lennar Corporation Project BL -10 -09747 December 2, 2010 ' Page 3 13.2. Geologic Profile ' B.2.a. Geologic Materials ' foot (BPF), indicating consistencies ranging from rather soft to very stiff. The penetration resistances in The general geologic profile at the boring locations (proceeding down from the ground surface) generally the layers and lenses of silty sand and sand ranged from 2 to 27 BPF, corresponding to relative densities consists of clayey topsoil underlain by mostly glacially deposited clay to the boring termination depths. of very loose to medium dense. Layers and lenses of silty sand and sand were also encountered in' several borings. Several borings also 6.2.b. Groundwater encountered either deeper thicknesses of either fill or slopewash soils. ' Topsoil was encountered in Borings ST -2, ST -5, ST -6, ST -9 and ST -10 and generally ranged in thickness from about %Z to 3 feet. In Borings ST - 1, ST - 4 and ST - 7, fill soils were encountered at the surface, varying in thickness from 4 to 13 feet. In Borings ST -3 and ST -8, about 7 to 10 feet of slopewash soils were encountered at the surface. Beneath the topsoil, fill and slopewash, the borings encountered mostly glacially deposited clayey soils with some layers of silty and sand in several borings. Penetration resistances in the glacially deposited clayey soils generally ranged from 4 to 27 blows per ' foot (BPF), indicating consistencies ranging from rather soft to very stiff. The penetration resistances in the layers and lenses of silty sand and sand ranged from 2 to 27 BPF, corresponding to relative densities ' of very loose to medium dense. 6.2.b. Groundwater Groundwater was only observed in Borings ST -3, ST -5, ST -8, ST -9 and ST -10 at depths ranging from 5 to 17 feet beneath the surface, or approximate elevations ranging from 874 to 889. Because of the large variation in observed water level elevations, it is our opinion that some of the water observed was likely ' perched within sand seams in the mostly clayey soils. Depending on the time of construction, perched groundwater may be present in these and other sand seams. Seasonal and annual fluctuations of groundwater should also be anticipated. 13.3. Laboratory Test Results The moisture content of the selected clay samples was determined to vary from approximately 16 to 46 percent, indicating that moisture contents of the clay material on the site varied from near to much ' above its probable optimum moisture content. I RDA11U IINICKIt� Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 4 One soil sample from the 7 to 8 foot depth in Boring ST -4 and another sample from the 15 to 16 foot depth in Boring ST -8 were washed through a number 200 sieve. The results were 17 and 7 percent passing this sieve, classifying these soil samples as silty sand and poorly graded sand with silt, respectively. The moisture content of these soil samples was measured to be 10 and 24 percent. An Atterberg limit test was completed on a sample from the 15 to 16 foot depth in Boring ST -1. The result indicated a liquid limit of 50. percent and a plasticity index of 32 percent. The moisture content of this sample was 32 percent. This soil sample was classified as lean clay but is on the border of being a fat clay. Hand penetrometer tests were conducted on selected clay samples to aid in determining the soils unconfined compressive strength. Results from the penetrometer tests found to soils to have strength values ranging from % to 2 tons per square foot (tsf). C. Basis for Recommendations C.1. Design Details A residential development is proposed to be constructed on the site. The size and number of lots to be graded on this site as well as proposed floor grades have not been determined at the time of this report. New streets and underground utilities will also be constructed. Other features to be constructed may include retention ponds and retaining walls. CA.a. Building Structure Loads 'We have assumed that bearing wall loads associated with the proposed residential construction will range from 3 to 4 kips (3,000 to 4,000 pounds) per linear foot (klf) and column loads, if any, will be no greater than 75 kips per column. C.1.b. Pavements and Traffic Loads We have assumed that bituminous pavements, typical of residential neighborhoods, will be subjected to normal traffic conditions over an assumed design life of 20 years. BRAUN INTERTEC Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 5 I C.2.. Design Considerations C.1.c. Anticipated Grade Changes Existing ground surface elevations vary significantly across the site. Final design grades were not available at'the time of this report. Based on the anticipated excavation depths, we anticipate that fill depths likely will exceed 10 feet in some areas of the site. Similarly, cuts on the order of 10 feet or greater feet may also be completed during site grading. ' south and southeast sides of the site near the wetlands. The fill and slopewash soils as well as the wet, C.i.d. Precautions ut s Regarding Changed Information We have attempted to describe our understanding of the proposed construction to the extent it was by reported to us others. Depending on the extent of available information, assumptions may have been ' made based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, we should be notified. New or changed information could require additional evaluation, analyses and /or recommendations. I C.2.. Design Considerations ' Provisions should also be made to control any groundwater that may be encountered. Based on the results of the borings, we anticipate that some localized perched water conditions could exist on this site, ' especially where layers and lenses of sand are encountered. BRAUN I NTE RTEC The geotechnical issues influencing design of the proposed residential development appear to be related to the depth of excavation needed to attain suitable bearing soils, variations in site elevations, and the condition of the onsite soils with respect to use as engineered fill. Based on the results of the current borings, it appears that part of the site will require limited soil corrections (to remove topsoil only) to attain suitable bearing soils. However, some deeper soil correction work will be needed toward the ' south and southeast sides of the site near the wetlands. The fill and slopewash soils as well as the wet, soft clay encountered in some of the borings are not suitable for house support or to be reused as engineered fill. Additionally, the majority of the onsite soils appear to be near or well above its optimum moisture ' content and will likely require moisture conditioning to meet the minimum density requirements. Due to the frost susceptible nature of the silt- and clay -rich soils present at anticipated exterior slab and pavement subgrade elevations, consideration should also be given to incorporating a granular subbase. into the pavement sections. This will enhance subgrade drainage efforts and reduce the potential for pavement subgrades to become saturated and heave upon freezing; strength loss upon thawing will also be reduced. ' Provisions should also be made to control any groundwater that may be encountered. Based on the results of the borings, we anticipate that some localized perched water conditions could exist on this site, ' especially where layers and lenses of sand are encountered. BRAUN I NTE RTEC Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 6 C.3. Construction Considerations From a construction perspective, the project team should also be aware that: ■ Some of the excavations may penetrate perched groundwater where lenses and layers of sandy soils are encountered. Dewatering may be required to facilitate an evaluation of the geologic materials exposed in the excavation sides and bottoms, and the placement and compaction of backfill. ■ Existing fills should be evaluated prior to reuse. Some fill soils could contain unsuitable material, although not observed in the borings. ■ It is important to understand the onsite clays will likely require moisture conditioning to facilitate compaction. Given the anticipated depths of the building area excavations, those areas with greater thickness of clay placed in an excavation will also settle over time from the excavation backfill compressing under its own weight. ,Construction delays and monitoring through the use of settlement plates may be required in these areas of deeper fills. If the construction schedule is such that delays cannot be endured, imported sands could be used to reduce the need for a construction delay. This should be evaluated once a final site plan has been prepared. ■ The soils at anticipated invert elevations for the proposed sanitary sewer installation generally appear suitable for support of the pipe. If groundwater or perched water is encountered, a layer of sand or aggregate may need to be placed beneath the pipe to act as bedding material. Perched groundwater layers may also be encountered during the excavation for the pipe installation. Post construction settlement of the utility trench backfill may also occur if the depth of the pipe exceeds 10 feet. D. Recommendations In accordance with our findings, below are our recommendations for construction of the proposed residential development, including utility installation, and street construction. I .. I Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 7 D.1. House Pad and Pavement Subgrade Preparation D.1.a. Excavations we recommend removing the vegetation, topsoil, fill, slopewash deposits, and soft to rather soft soils from within the house pad and roadway areas (including oversize areas). Based on the results of our soil borings, excavation depths are expected to range from approximately 1/2 to 13 feet. Table 1 below lists the anticipated depths of excavation at the boring locations. Table 1. Anticinated Excavation Deaths for Residential Construction. Boring Surface Elevation (ft) Anticipated Depth of Excavation (ft) Approximate Bottom Elevation (ft) ST -1 917.5 13 904 ST -2 889.0 10 12* 879 -877* ST -3 879.1 12 867 ST-4 9141 7 907 `Y: ST -5 904.9 h 904 ST -6 918.4 Y: 918 ST -7 905.6 .4 901 YZ ST -8 888.6 7 -12* 881 Yi - 876 ST -9 904.1 Yz 903 Y2 ST -10 884.9 3 882 *The depth of excavation should be further evaluated in the field during site grading. Excavation depths will vary between the borings. Portions of the excavations may also be deeper than indicated by the current and previous borings.. Contractors should also be prepared to extend excavations in wet or fine - grained soils to remove disturbed bottom soils. To provide lateral support to replacement backfill, additional required fill and the structural loads they will support, we.recommend oversizing (widening) the excavations 1 foot horizontally beyond the outer edges of the building perimeter footings, or pavement limits, for each foot the excavations extend below bottom -of- footing or pavement subgrade elevations. D.1.b. Excavation Dewatering we recommend removing groundwater from the excavations. Sumps and pumps can be considered for excavations in low- permeability silt- and clay -rich soils. Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 8 D.1.c. Selecting Excavation Backfill and Additional Required Fill If the bottoms of the excavations remain wet, or have water seeping into them, we recommend initially backfilling over wet or submerged excavation bottoms with at least 2 feet of coarse sand having less than 50 percent of the particles by weight passing a #40 sieve, and less than 5 percent of the particles passing a #200 sieve. This material will need to be imported from offsite. If the bottom of the excavations remain dry and stable, or after the coarse sand has been placed, on -site soils free of organic soil and debris can be considered for reuse as backfill and fill. The clay soils, however, being fine - grained, will be more difficult to compact if wet or allowed to become wet, or if spread and compacted over wet surfaces. Most of the onsite soils appear to have moisture contents well above its probable optimum moisture content. As a result, prospective fill soils may require substantial moisture conditioning in order to attain proper compaction. Moisture conditioning can be labor and time intensive, and is only recommend during summer months (approximately June through. September). In areas where more than 10 feet of fill is required below proposed houses, a construction delay will likely be needed to allow the fill to consolidate under its own weight. Construction delays typically last 3 to 6 months, but could be extended longer depending on. the depth of fill and the level of compaction obtained. If a longer settlement delay is not possible, we recommend filling the initial lifts with sand containing less than 12 percent of the particles by weight passing a #200 sieve. This material will need to be imported fill. We should be consulted to discuss and provide additional recommendations for areas of fill thicker than 10 feet. We also recommend that granular subbase material for pavement support consist of sand having less than 12 percent of the particles by weight passing a #200 sieve. D.Ld. Placement and Compaction of Backfill and Fill We recommend spreading backfill and fill in loose lifts of approximately 8 to 12 inches. We recommend compacting backfill and fill in accordance with the criteria presented below in Table 2: The relative compaction of utility trench backfill should be evaluated based on the structure below which it is installed, and vertical proximity to that structure. t Lennar Corporation Project BL -10 -04747 December 2, 2010 Page 9 Table 2. Comoaction Recommendations Summary `Except for wall backfill. See Section D.3. of this report. If fill depths exceed 10 feet, the minimum compaction requirement should be increased to 98 percent. As noted above, if fill depths exceed 10 feet, a construction delay may be necessary to allow the fill to consolidate under its own weight: Construction delays can range from 3 to 6 months or longer, depending on the depth and type of fill placed. We recommend placing settlement plates on lots where a construction delay is required to allow for periodic monitoring. We recommend monitoring the settlement plates once a week during the first month, once every other week for the second month, and once a month thereafter until the settlement rate has declined to within tolerable ranges. Relative Compaction, percent Moisture Content Variance from Reference [ASTM D 698— standard Proctor) Optimum, percentage points Below foundations, less than 95 -1 to +3 for clayey soils 10 feet of fill ± 3 for sandy soils Below foundations, greater than 98 -1 to +2 for clayey soils 10 feet of fill ± 3 for sandy soils 95 -1 to +3 for clayey soils Below slabs ± 3 for sandy soils Below pavements, within 3 feet 10D -1 to +1 for clayey soils of subgrade elevations ± 3 for sandy soils Below pavements, more than 3 feet 95 -1 to +3 for clayey soils below subgrade elevations ± 3 for sandy soils 90 * -3 to +5 for clayey soils Below landscaped surfaces * ± 5 for sandy soils `Except for wall backfill. See Section D.3. of this report. If fill depths exceed 10 feet, the minimum compaction requirement should be increased to 98 percent. As noted above, if fill depths exceed 10 feet, a construction delay may be necessary to allow the fill to consolidate under its own weight: Construction delays can range from 3 to 6 months or longer, depending on the depth and type of fill placed. We recommend placing settlement plates on lots where a construction delay is required to allow for periodic monitoring. We recommend monitoring the settlement plates once a week during the first month, once every other week for the second month, and once a month thereafter until the settlement rate has declined to within tolerable ranges. u If fill is to be placed on slopes with a gradient steeper than a 5:1 (horizontal to vertical) grade, there is potential for instability, resulting in creep of the fill mass. In these cases, we recommend "benching" or excavating into the slopes at 5 -foot vertical intervals to key the fill into the slope. We recommend each bench be a minimum of 10 feet wide. BRAUN INTERTEC delay be As mentioned previously, if the construction schedule is such that a construction cannot tolerated, imported sand containing less than 12 percent of fine- grained material, can be placed to within 10 feet of the bottom of footing elevation. Sand soils consolidate much quicker than clay soils, and the majority of consolidation will likely be completed during construction of the lot. u If fill is to be placed on slopes with a gradient steeper than a 5:1 (horizontal to vertical) grade, there is potential for instability, resulting in creep of the fill mass. In these cases, we recommend "benching" or excavating into the slopes at 5 -foot vertical intervals to key the fill into the slope. We recommend each bench be a minimum of 10 feet wide. BRAUN INTERTEC Lennar Corporation Project BL- 10-09747 December 2, 2010 Page 10 D.Z. Spread Footings D.2.a. Embedment Depth For frost protection, we recommend embedding perimeter footings 42 inches below the lowest exterior grade. Interior footings may be placed directly below floor slabs. We recommend embedding building footings not heated during winter construction, and other unheated footings associated with decks, porches, stoops or sidewalks 60 inches below the lowest_ exterior grade. Attached garages are generally considered heated structures and may be supported by footings placed a minimum of 42 inches below outside finished grade. Foundations for porches or decks should be extended at least 5 feet below finished grade. The foundations should be constructed at a minimum 21/2 x 21/2 foot wide footing tied with reinforcing steel to the foundation column. If a drilled shaft is utilized, the bottom of the shaft should be belled at the bottom an additional 12. inches. For either foundation type, the shaft or foundation column should be wrapped by a material that will not allow frozen soils to adhere to the foundations, potentially heaving them. The use of soon -tubes for shaft foundations is usually not sufficient to act as a bond break. D.2.b. Subgrade Improvement If a small amount of groundwater is present within the excavation prior to placing forms or reinforcement, we recommend placing a.6- to 12 -inch layer of clear rock. The clear rock will provide a stable working surface, and will allow for the flow of water.to a drain tile or sump pump. D.2.c. Net Allowable Bearing Pressure We recommend sizing spread footings to exert a net allowable bearing pressure of 2,000 pounds per square foot (psf). This value includes a safety factor of at least 3.0 with regard to bearing capacity failure. The net allowable bearing pressure can be increased by one -third its value for occasional transient loads, but not for repetitive loads due to traffic, or for other live loads from snow or occupancy. D.2.d. Settlement We estimate that total and differential settlements among the footings will amount to less than 1 and 1/2 inch, respectively, under the reported loads. In areas where more than 10 feet of fill are placed, .greater settlements could occur if a construction delay is not observed. BRAUN INTERTEC I D.3. Basement Walls The following sections address soil parameters for basement wall design. Many of the following recommendations can also be incorporated into any preliminary retaining wall design that may occur on this site. If retaining walls are planned we recommend that additional soil borings and analyses be completed. D.3.a. Drainage Control We recommend installing subdrains behind the basement walls, adjacent to the wall footings, below the slab elevation. The subdrains could consist of perforated pipes embedded in washed gravel, which in turn is wrapped in filter fabric. Perforated pipes encased in a filter "sock" and embedded in washed gravel, however, may also be considered. Alternative drainage systems could also be used. We recommend routing the subdrains to a sump and pump capable of routing any accumulated groundwater to a storm sewer or other suitable disposal site. General waterproofing of basement walls is recommended even with the use of free- draining backfill because of the potential cost impacts related to seepage after construction is complete. D-3-b. Selection, Placement and Compaction of Backfill Unless a drainage composite is placed against the backs of the exterior perimeter basement walls, we recommend that backfill placed within 2 horizontal feet of those walls consist of sand having less than 50 percent of the particles by weight passing a #40 sieve and less than 5 percent of the particles by weight passing a #200 sieve. Sand meeting this gradation will need to be imported. We recommend that the balance of the backfill placed against exterior perimeter walls also consist of sand, though it is our opinion that the sand may contain up to 20 percent of the particles by weight passing a #200 sieve. if clay must be considered for use to make up the balance of the below -grade wall backfill (assuming a drainage composite or sand is placed against the backs of the walls), post - compaction consolidation of the clay occurring under its own weight can be expected to continue beyond the end of construction. The magnitude of consolidation could amount to between 1 and 3. percent of the clay backfill thickness, or wall height, and if not accommodated could cause slabs or pavements to settle unfavorably or be damaged. Should clay still be considered for use as backfill, however, we further recommend that: ■ The bottoms of the excavations required for basement wall construction are wide enough to Id accommodate compaction equipment. BRAUN INTERTEC Lennar Corporation Project BL -10 -09747 ' December 2, 2010 Page 11 I D.3. Basement Walls The following sections address soil parameters for basement wall design. Many of the following recommendations can also be incorporated into any preliminary retaining wall design that may occur on this site. If retaining walls are planned we recommend that additional soil borings and analyses be completed. D.3.a. Drainage Control We recommend installing subdrains behind the basement walls, adjacent to the wall footings, below the slab elevation. The subdrains could consist of perforated pipes embedded in washed gravel, which in turn is wrapped in filter fabric. Perforated pipes encased in a filter "sock" and embedded in washed gravel, however, may also be considered. Alternative drainage systems could also be used. We recommend routing the subdrains to a sump and pump capable of routing any accumulated groundwater to a storm sewer or other suitable disposal site. General waterproofing of basement walls is recommended even with the use of free- draining backfill because of the potential cost impacts related to seepage after construction is complete. D-3-b. Selection, Placement and Compaction of Backfill Unless a drainage composite is placed against the backs of the exterior perimeter basement walls, we recommend that backfill placed within 2 horizontal feet of those walls consist of sand having less than 50 percent of the particles by weight passing a #40 sieve and less than 5 percent of the particles by weight passing a #200 sieve. Sand meeting this gradation will need to be imported. We recommend that the balance of the backfill placed against exterior perimeter walls also consist of sand, though it is our opinion that the sand may contain up to 20 percent of the particles by weight passing a #200 sieve. if clay must be considered for use to make up the balance of the below -grade wall backfill (assuming a drainage composite or sand is placed against the backs of the walls), post - compaction consolidation of the clay occurring under its own weight can be expected to continue beyond the end of construction. The magnitude of consolidation could amount to between 1 and 3. percent of the clay backfill thickness, or wall height, and if not accommodated could cause slabs or pavements to settle unfavorably or be damaged. Should clay still be considered for use as backfill, however, we further recommend that: ■ The bottoms of the excavations required for basement wall construction are wide enough to Id accommodate compaction equipment. BRAUN INTERTEC Lennar Corporation Project BL -10- 0974,7 December 2, 2010 Page 12 Backfill is placed at moisture contents at least equal to, but not more than three percentage points above, its optimum moisture content. ■ Backfill is placed in loose lifts no thicker than 6 inches prior to compaction. ■ The relative compaction of the backfill is measured through density testing at intervals not exceeding one test per'50 horizontal feet for each 2 vertical feet of backfill placed. We recommend a walk behind compactor be used to compact the backfill placed within about 5 feet of the retaining walls and basement walls. Further away than that, a self - propelled compactor can be used. Compaction criteria for below -grade walls should be determined based on the compaction recommendations provided above in Section D.1. Exterior backfill not capped with slabs or pavement should be capped with a low - permeability soil to limit the infiltration of surface drainage into the backfill. The finished surface should also be sloped to divert water away from the walls. D.3.c. Configuring and Resisting Lateral Loads Basement wall design can be based on active earth pressure conditions if the walls are allowed to rotate slightly. If rotation cannot be tolerated, then design should be based on at -rest earth pressure conditions Rotation up to 0.002 times the wall height is generally required at activate.active earth pressure conditions when walls are backfilled with sand *. Rotation up to 0,02 times the wall height is required when walls are backfilled with clay. * To design for sand backfill, excavations required for wall construction should be wide enough and flat enough so that sand is present within a zone that (1) extends at least two horizontal feet beyond the bottom outer edges of the wall footings (the_ wall heel, not the stem) and then (2) rises up and away from the wall at an angle no steeper than 60 degrees from horizontal. We anticipate these geometric conditions will be met if the excavations meet OSHA requirements for the types of soils likely to be exposed in the excavation, and the wall footings are cast against wood forms rather than any portion of the excavation. Recommended equivalent fluid pressures for wall design based on active and at -rest earth pressure conditions are presented below in Table 3. Assumed wet unit backfill weights, and internal friction angles are also provided. The recommended equivalent fluid pressures in particular assume a level backfill with no surcharge —they would need to be revised for sloping backfill or other dead or live loads that are placed within a horizontal distance behind the walls that is equal to the height of the walls. Our design values also assume that the walls are drained so that water cannot accumulate behind the walls. BRAS 1NTERTEC 1 Table 3. Recommended Below -Grade Wall Desien Parameters D.O. Radon Lennar Corporation Equivalent Fluid Project BL -10 -09747 Wet Unit Weight December 2, 2010 Pressure, Active Case Page 13 1 Table 3. Recommended Below -Grade Wall Desien Parameters Resistance to lateral earth pressures will be provided by passive resistance against the retaining wall or basement wall footings, and by sliding resistance along the bottoms of the wall footings. We recommend assuming a passive pressure equal to 400 pcf for sands and 320 pcf for clays with sliding coefficients equal to 0.40 and 0.35, respectively. These values are un- factored. . DA - Interior Slabs D.4.a. Moisture Vapor Protection If floor coverings or coatings less permeable than the concrete slab will be used, we recommend that a vapor retarder or vapor barrier be place immediately beneath the slab. Some contractors prefer to bury the vapor retarder or barrier beneath a layer of sand to reduce curling and shrinkage, but this practice risks trapping water between the slab and vapor retarder or barrier. Regardless of where the vapor retarder or barrier is placed, we recommend consulting with floor covering manufacturers regarding the appropriate type, use and installation of the vapor retarder or barrier to preserve warranty assurances. 1 D.O. Radon Equivalent Fluid Equivalent Fluid layer of gas permeable material consisting of a minimum of 4 inches of either clean aggregate, or sand overlain with a geotextile matting suitable for venting the subgrade. The clean aggregate material should Wet Unit Weight Friction Angle Pressure, Active Case Pressure, At -Rest Case Back-fill Soil (pef) (deg) (pcf) (Pcf) sand 120 32 40 55 Clay (CL, CLS) 125 26 50 70 Resistance to lateral earth pressures will be provided by passive resistance against the retaining wall or basement wall footings, and by sliding resistance along the bottoms of the wall footings. We recommend assuming a passive pressure equal to 400 pcf for sands and 320 pcf for clays with sliding coefficients equal to 0.40 and 0.35, respectively. These values are un- factored. . DA - Interior Slabs D.4.a. Moisture Vapor Protection If floor coverings or coatings less permeable than the concrete slab will be used, we recommend that a vapor retarder or vapor barrier be place immediately beneath the slab. Some contractors prefer to bury the vapor retarder or barrier beneath a layer of sand to reduce curling and shrinkage, but this practice risks trapping water between the slab and vapor retarder or barrier. Regardless of where the vapor retarder or barrier is placed, we recommend consulting with floor covering manufacturers regarding the appropriate type, use and installation of the vapor retarder or barrier to preserve warranty assurances. 1 D.O. Radon In preparation for radon mitigation systems, we recommend that slabs on grade be constructed over a layer of gas permeable material consisting of a minimum of 4 inches of either clean aggregate, or sand overlain with a geotextile matting suitable for venting the subgrade. The clean aggregate material should consist of sound rock no larger than 2 inches and no smaller than % inch. Sand should have less than 50 ' percent of the particles by weight passing a #40 sieve and less than 5 percent of the particles by weight passing a 4200 sieve. Above the gas permeable aggregate or sand, a polyethylene sheeting (6 mil minimum) should be placed. The sheeting should be properly lapped and penetrations through the sheeting sealed. Penetrations through the slab and foundation walls should also be sealed. _ l� .. IN I CKI CL Lennar Corporation Project BL- 10-09747 December 2, 2010 Page 14 D.S. Exterior Slabs Exterior slabs will likely be underlain with mostly lean clay and sandy lean clay, which are considered moderately to highly frost susceptible. If these soils become saturated and freeze, unfavorable amounts of heaving could occur. Grading to direct surface drainage away from buildings helps limit the potential for saturation and subsequent heaving to occur. Still, even limited amounts of movement can create tripping hazards. One way to help limit the potential for heaving to occur is to remove frost - susceptible soils present below the overlying slab "footprints" down to bottom -of- footing grades or to a maximum depth of 5 feet below subgrade elevation, whichever is least, and replace them with non frost - susceptible (NFS) backfill consisting of sand having less than 5 percent of the particles by weight passing a #200 sieve. If the banks of excavations to remove frost - susceptible soils from below exterior slabs are not sloped, abrupt transitions between frost - susceptible and NFS backfill will exist along which unfavorable amounts of differential heaving may still occur. Such transitions could exist between exterior slabs and pavements, between slabs and sidewalks, and along the slabs themselves should excavations be confined only to the building entrances. NSF backfill is also likely to be more permeable than the soils it replaces, and so can also trap infiltrating surface drainage and groundwater that can contribute to heaving at transitions. To address these issues, we recommend: ■ Sloping the banks of excavations to remove frost - susceptible soils at a 3:1 (horizontal:vertical) or flatter gradient. ■ Sloping the bottoms of the excavations to drain away from the building. installing perforated drainpipes along the bottom outer edges of the excavations to collect and dispose of surface drainage and groundwater that could otherwise accumulate within the backfill and contribute to heaving. One alternative for reducing frost - related heave is to place at least 2 inches of extruded polystyrene foam insulation below the slabs and extend it approximately 4 feet beyond the outer edges of the slabs. The insulation may have to be buried below a cushion of sand or gravel to protect it during construction. Another alternative is to support the slabs on frost -depth footings, and suspending the slabs at least 4 inches above the underlying subgrade soils to accommodate heaving without it affecting the slabs. ' Lennar Corporation Project BL -10 -09747 December 2, 2010 r Page 15 D.6. Pavements D.6.a. Subgrade Proof -Roll Prior to placing aggregate base material, we recommend proof - rolling pavement subgrades to determine if the subgrade materials are loose, soft or weak, and in need of further stabilization, compaction or ' subexcavation and recompaction or replacement. A second proof -roll should be performed after the aggregate base material is in place, and prior to placing bituminous or concrete pavement. ' D.6.b. Design Sections Laboratory tests to determine an R -value for pavement design were not included in the scope of this ' project. Based on our experience with similar projects in the area, however, it is our opinion that an R- value of 10 can be assumed for design purposes. Based upon the aforementioned traffic loads and an R -value of 10, we recommend a bituminous pavement section that includes a minimum of 31/2 inches of bituminous pavement (a 1 1/2 -inch surface ' course over a 2 -inch base course) over 8 inches of aggregate base material and 18 inches of sand subbase. ' The above pavement designs are based upon a 20 -year performance life. This is the amount of time before major reconstruction is anticipated. This performance life assumes maintenance, such as seal coating and crack sealing, is routinely performed. The actual pavement life will vary depending on ' variations in weather, traffic conditions and maintenance. D.6.c. Materials and Compaction We recommend specifying crushed aggregate base meeting the requirements of Minnesota Department of Transportation (Mn /DOT) Specification 3138 for Class 5. We recommend that the bituminous wear ' and base courses meet the requirements of Specifications 2360. We recommend that the aggregate base be compacted to a minimum of 100 percent of its maximum standard Proctor dry density. We recommend that the bituminous pavement be compacted to at least 92 percent of the maximum theoretical Rice density. D.6.d. Subgrade Drainage We recommend installing perforated drainpipes throughout pavement areas at low points and about catch basins. The drainpipes should be placed in small trenches extended at least 8 inches below the granular subbase layer (if utilized) —or aggregate base material where no subbase is present. BRAUN (NTERTEC Lennar Corporation Project BL -10 -09747 December 2, 2810 Page 16 D.7. Utilities D.7.a. Subgrade Stabiliiation We anticipate that utilities can be installed per manufacturer bedding requirements. If localized soft areas are encountered at pipe invert elevations, we recommend placing a stabilizing aggregate beneath the pipe. The depth of the aggregate bedding will vary, however, a minimum of 6 inches and a maximum of 2 feet is commonly used. This should be evaluated in the field at the time of installation. D.7.b. Selection, Placement and compaction of Backfill We recommend selecting, placing and compacting utility backfill in accordance with the recommendations provided above in Section D.I. D.B. Construction Quality Control D.B.a. Excavation Observations We recommend having a geotechnical engineer observe all excavations related to subgrade preparation and spread footing, slab -on -grade and pavement construction. The purpose of the observations is to evaluate the competence of the geologic materials exposed in the excavations, and the adequacy of required excavation oversizing. D.B.b. Materials Testing We recommend density tests be taken in excavation backfill and additional required fill placed below spread footings, slab -on -grade construction, beside foundation walls, behind basement walls, behind retaining walls, and below pavements. We recommend Marshall tests on bituminous mixes to evaluate strength and air voids, and density tests to evaluate compaction. We also recommend slump, air content and strength tests of Portland cement concrete. D.8-c. Pavement Subgrade Proof -Roll We recommend that proof - rolling of the pavement subgrades be observed by a geotechnical engineer to determine if the results of the procedure meet project specifications, or delineate the extent of additional pavement. subgrade preparation work. BRAUN [NTERTEC 1 1 1 1 1 1 1 1 1 1 1 1 1 Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 17 D.8.d. Cold Weather Precautions If site grading and construction is anticipated during cold weather, all snow and ice should be removed from cut and fill areas prior to additional grading. No fill should be placed on frozen subgrades. No frozen soils should be used as fill. Concrete delivered to the site should meet the temperature requirements of ASTM C 94. Concrete should not be placed on frozen subgrades. Concrete should be protected from freezing until the necessary strength is attained. Frost should not be permitted to penetrate below footings. E. Procedures E.1. Penetration Test Borings The penetration test borings were drilled with an all terrain - mounted core and auger drill equipped with hollow -stem auger. The borings were performed in accordance with ASTM D 1586. Penetration test samples were taken at 21/2- or 5 -foot intervals. Actual sample intervals and corresponding depths are shown on the boring logs. E.2. Material Classification and Testing E.2.a. Visual and Manual Classification The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage. E.2.b. Laboratory Testing The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM or AASHTO procedures. E.3. Groundwater Measurements The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then immediately backfilled. BRAUN I NTE RTEC Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 18 F. F.1, Qualifications Variations in Subsurface Conditions F.1.a. Material Strata Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations. Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re- evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them. FA.b. Groundwater Levels Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors. F.2. Continuity of Professional Responsibility F.2.a. Plan Review This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications. F.2.b. Construction Observations and Testing It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility. BRAUN INTERTEC Lennar Corporation Project BL -10 -09747 December 2, 2010 Page 19 F.3. Use of Report ' This report is for the exclusive use of the parties to which it has been addressed. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects. FA Standard of Care 1 In erformin its services Braun Intertec used that degree of care and skill ordinarily exercised under p g g Y similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made. 1 = 1 1 1 _ t 1 1 1 BRAUN 1 [ NTE RTEC LU Z ���U�@ U *osmawnuVm`owmoonoo .v-9� o ws- Itilk MJ 10 1 Ik �� 1 11M A/ IVI W 1 119 lit' I IT- BRAUN"' INTERTEC LOG OF BORING Braun Project BL -10 -09747 BORING: ST -1 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: S. Briggs METHOD: 31/4' HSA, Autohammer DATE: 11/15/10 SCALE: 1 Elev. feet Depth feet Description of Materials p BPF WL MC Tests or Notes 917.5 0.0 Symbol (Soil- ASTM D2488 or D2487, Rock -USAGE EMI 110-1-2908) FILL FILL: Lean Clay with Sand, brown with a trace of black, wet. 915.5 2.0 FILL FILL: Lean Clay, with Organics and Roots, dark brown and black, wet. 10 7 4 5 904.5 13.0 8 CL LEAN CLAY, brown, wet, medium to rather stiff. (Glacial Till) 11 32 PL = 50 PI = 32 899.5 18.0 CL SANDY LEAN CLAY, with a trace of Gravel, brown, _ wet, stiff. (Glacial Till) 15 896.5 21.0 END OF BORING. Water not observed with 19 1/2 feet of hollow -stem auger in the ground. — Water not observed to cave -in depth of 17 112 feet immediately after withdrawal of auger. Boring immediately backfilled. BL -10 -09747 Braun mienec wrporauon F.W= , — 1 1 1 1 1 1 1 1 1 1 1 1 BRAU N"' INTERTEC LOG OF BORING Braun Project BL -10 -09747 BORING: ST -2 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: S. Briggs METHOD: 3114" HSA, Autohammer DATE: 11115/10 SCALE: V = 4' Elev. feet Depth feet Description of Materials BPF WL MC PP Tests or Notes 889.0 0.0 Symbol (Soil -ASTM D2488 or D2487, Rock -USAGE EMI 110-1-2908) ov a CL LEAN CLAY with SAND, with a trace of Organics, dark _ brown and black, wet. — (Topsoil) 886.0 3.0 7 CL SANDY LEAN CLAY, with seams of Silty Sand, brown, _ wet, medium. (Glacial Till) 884.0 5.0 5 24 1 CL LEAN CLAY with SAND, brown, wet, rather soft. _ (Glacial Till) ' 882.0 7.0 CL SANDY LEAN CLAY, with a trace of Gravel, grayish _ brown mottled with rust, wet, rather soft. 4 25 114 (Glacial Till) 879.0 10.0 5 112 ' CL SANDY LEAN CLAY, with a trace of Gravel, brown, _ wet, rather soft. (Glacial Till) 6 With lenses of Silty Sand at 13 feet. 874.0 15.0 4 ' SM : ' SILTY SAND, fine- to medium - grained, with layers of _ Lean Clay and Poody Graded Sand, brown, wet, very loose to loose. (Glacial Till) 4 . 5 868.0 21.0 END OF BORING. Water not observed with 19 1/2 feet of hollow -stem — auger in the ground. — Water not observed to cave -in depth of 15 feet immediately after withdrawal of auger. — Boring immediately backfilled. tSL- iIJ-U! /4/ tsraun irueneo Lorporanon sr -Z page 1 01 1 B RAU Hm IN LOG OF BORING Braun Project BL -10 -09747 BORING: ST -3 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard.and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: METHOD: I DATE: SCALE: 1 Elev. feet Depth feet Description of Materials p BPF WL MC Tests or Notes 879.1 0.0 Symbol {Soil- ASTM D2488 or D2487, Rock llSACE EM1110 -1 -2908} % CL LEAN CLAY, with Organics and Roots, dark brown and _ black, wet. (Slopewash and Topsoil) 4 SZ — 3 An open triangle in the water level (WL) column — indicates the depth at _ which groundwater was observed while drilling. 2 Groundwater leves fluctuate. 869.1 10.0 3 21 CL LEAN CLAY, with a layer of Clayey Sand, gray, wet, _ soft. (Alluvium) 867.1 12.0 SM ': SILTY SAND, fine- to medium - grained, with layers of Lean Clay with Sand, brown, wet, medium. 13 (Glacial Till) — 16 861.1 18.0 CL SANDY LEAN CLAY, with a trace of Gravel, gray, wet, _ stiff. (Glacial Till) 13 858.1 21.0 END OF BORING. Water observed at 9112 feet while drilling. Water observed at 15 112 feet with 19112 feet of — hollow -stem auger in the ground.' — Water observed at 5 feet with cave -in depth of 12 112 feet immediately after withdrawal of auger. Boring immediately backfilled. BL- 10-03747 Braun Intertee Corporation F" BRAUN I NTE RTEC LOG OF BORING Braun Project BL -10 -09747 BORING: ST -4 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: METHOD: DATE: SCALE: 1" = 4' feet Teet Description of Materials BPF WL MC Tests or Notes 914.7 0.0 Symbol (Soil- ASTM D2488 or D2487, Rock -USAGE EM1110 -1 -2908) FILL FILL: Silty Sand, fine- to medium - grained, with a trace 913.7 1 0 of Gravel, dark brown. FILL FILL: Poorly Graded Sand with Silt, fine- to — medium - grained, with lenses of Silty Sand, with inclusions of Clayey Sand, with a trace of grass, brown 7 — and dark brown, moist to wet. 2 907.7 7.0 SM .` SILTY SAND, fine- to medium -grained, with a trace of Gravel, brown, moist, medium dense. 14 10 p200=17 905.7 9.0 (Glacial Outwash) CL SANDY LEAN CLAY, with lenses of Poorly Graded a — Sand and Silt, brown, moist to wet, stiff to rather stiff. (Glacial Till) 13 i s_ 11 r 899.7 15.0 8 CL SANDY LEAN CLAY, with a trace of Gravel, gray, wet, medium to rather stiff. i (Glacial Till) 9 893.7 21.0 END OF BORING. Water not observed with 19 1/2 feet of hollow -stem — auger in the ground. — Water not observed to cave -in depth of 18 feet immediately after withdrawal of auger. — Boring immediately backfilled. oraun rnreneu wrpora !on a i -a Pagel or .1 BRAUNm INTFRTFC LOG OF BORING Braun Project BL -10 -09747 BORING: ST -5 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: M. Takada METHOD: DATE: 11/16/10 SCALE: 1" = 4' Elev. feet feet Depth feet Description of Materials p BPF WL MC Tests or Notes 904.9 0.0 Symbol (Soil- ASTM D2488 or D2487, Rock -USAGE EM1110 -1 -2908) CL LEAN CLAY, with Organics, dark brown, wet_ (Topsoil) — CL SANDY LEAN CLAY, with a trace of Gravel, brown, — wet, rather stiff to very stiff. (Glacial Till) 10 21 14 16 10 19 No sample recovered. 892.9 12.0 CL SANDY LEAN CLAY, with a trace of Gravel, grayish _ brown to gray, wet, rather stiff. 12 (Glacial Till) 11 i _ i- 1 885.9 19.0 POORLY GRADED SAND with SILT, fine- to SM ::' medium - grained, with a trace of Gravel, brown, moist medium dense. 27 883.9 21.0 (GlacialOutwash) END OF BORING. Water not observed with 19 1/2 feet of hollow -stem — auger in the ground. — Water observed at 16 feet with cave -in depth of 17 feet r " immediately after withdrawal of auger. _ Boring immediately backfilled. i i i CT_+ nano 9 of 1 d r ° c c z a C G C C C BLAM9.747 Braun cnrerux wFpul auw i BRAUN INTERTEC LOG OF BORING Braun Project BL -10 -09747 BORING: ST -6 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: M. Takada METHOD: DATE: 11/16110 SCALE: 1" = 4' Elev. feet Depth feet Description of Materials BPF WL MC PP Tests or Notes 918.4 0.0 Symbol (Soil- ASTM D2488 or D2487, Rock -USACE EM1110 -1 -2908) % % Q17 0 CL LEAN CLAY, with Organics, dark brown, wet. (Topso — CL LEAN CLAY, brown, wet, stiff to rather stiff. — (Glacial Till) 13 30 1.1/2 9 37 1 911.4 7.0 CL SANDY LEAN CLAY, with a trace of Gravel, brown, _ wet, medium to very stiff. 8 (Glacial Till) 10 20 9 900.4 18.0 SC CLAYEY SAND, with a trace of Gravel, brown, moist, _ stiff. (Glacial Till) 16 897.4 21.0 END OF BORING. Water not observed with 19 1/2 feet of hollow -stem auger in the ground. — Water not observed to cave -in depth of 17 feet immediately after withdrawal of auger. Boring immediately backfilled. a�-tu -u7iyi PgWIII IWIk l: �.u1 FlUIGuVIi BRAUN' I KIT'F PTPI!' LOG OF BORING Braun Project BL -10 -09747 BORING: ST -7 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: S. Briggs METHOD: DATE: 11/15/10 SCALE: V =4' Elev. feet feet Depth feet Descri lion of Materials p BPF WL MC Tests or Notes 0.0 Symbol (Soil -ASTM D2488 or D2487, Rock -USACE EM1110 -1 -2908) FELL FILL: Lean Clay, brown, wet. 903.6 2.0 FILL FILL: Silty Sand, fine- to medium - grained, with lenses _ of Lean Clay and a trace of grass, dark brown and 9 gray, wet. 901.6 4.0 CL LEAN CLAY, with lenses of Silty Sand, brown, wet, stiff to rather stiff. 13 (Glacial Till) i 12 40 895.6 10.0 10 CL LEAN CLAY with SAND, brown, wet, rather stiff. _ (Glacial Till) 12 No sample recovered. _ 1- 890.6 15.0 10 CL SANDY LEAN CLAY, with a trace of Gravel, brown, > _ wet, rather stiff to very stiff. (Glacial Till) 27 884.6 21.0 END OF BORING. Water not observed with 19 1/2 feet of hollow -stem _ auger in the ground. — Water not observed to cave -in depth of 13 1/2 feet I r Immediately after withdrawal of auger. _ l Boring immediately backfilled. i 0 i — , ST -7 nacre 4 of 1 t$L- lU-U7lN1 1 1 1 1 1 1 1 1 1 1 1 1 1 BRAUN I NTE RTEC LOG OF BORING Braun Project BL -10 -09747 BORING: ST -8 GEOTECHNICAL EVALUATION LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: M. Takada METHOD: DATE: 11/16/10 SCALE: 1"=4' Elev. Depth feet feet Description of Materials BPF WL MC PP Tests or Notes 888.6 0.0 Symbol (Soil -ASTM D2488 or D2487, Rock -USAGE EMI 110-1-2908) ov ov a CL LEAN CLAY, with Organics, black and dark brown, wet. _ (Slopewash or Topsoil) _ 6 5 s 881.6 7.0 z CL LEAN CLAY, light gray mottled with rust, wet, medium s _ to rather soft. 7 28 1 112 (Glacial Till) i i ' 4 46 1/4 876.6 12.0 CL LEAN CLAY, gray, wet, medium. _ (Glacial Till) 7 1 '• 873.6 15.0 2 Q 24 P200 = 6.5% ' SP- '_:. • POORLY GRADED SAND with SILT, fine- to SM :. medium - grained, with a trace of Gravel, brown to gray, waterbearing, very loose to medium dense. — (Glacial Outwash) 15 867.6 21.0 END OF BORING. Water observed at 15 feet while drilling. Water observed at 17 feet with 19112 feet of — hollow-stem auger in the ground. — Water observed at 16 feet immediately after withdraws _ of auger. Boring immediately backfilled. I oraun enteric c:orporaaon a r -a page I or r BRAUN' 1K[TFPTp LOG OF BORING Braun Project BL -10 -09747 BORING: ST -9 GEOTECWNICAL EVALUATION LOCATION: See atlached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: M. Takada METHOD: DATE: 11N6110 SCALE: 1" = 4 Elev. feet Depth feet Description of Materials BPF WL MC PP Tests or Notes 904.1 0 Symbol (Soil ASTM D2488 or D2487, Rock - USACE EMI 110 CL ML LEAN CLAY, with Organics, dark brown, wet. (Topsoil) – CL LEAN CLAY, with seams of Silty Sand, brown, wet, – medium. (Glacial Till) 6 38 11/2 900.1 4.0 CL LEAN CLAY with SAND, brown, wet, medium. — (Glacial Till) 7 23 11/2 897.1 7.0 ! CL SANDY LEAN CLAY, with a trace of Gravel, brown € mottled with rust, wet, medium to stiff. 8 _ (Glacial Till) i 10 i— i i ? g i 9 u i— u u _ u 13 883.1 21.0 END OF BORING. Water not observed with 191/2 feet of hollow -stem _ auger in the ground. – Water observed at 17 feet immediately after withdrawal 3 of auger. J �- ' Boring immediately backfilled. c — ii r 0 0 7 ST -9 Dane 1 of 1 i sROUNu INTERTEC r. 1 0 N N 0 z a m ' a O a n 0 z c O O t7 O LOG OF BORING Braun Project BL -10 -09747 B BORING: ST -10 GEOTECHNICAL EVALUATION L LOCATION: See attached sketch. Proposed Residential Development Lyman Boulevard and Lake Riley Boulevard Chanhassen, Minnesota DRILLER: M. Takada M METHOD: D DATE: 11/16/10 S SCALE: 1" = 4' Dfeeth D feet D Description of Materials BPF W WL M MC P PP T Tests or Notes 884.9 0 0.0 S Symbol I (Soil- ASTM D2488 or D2487, Rock -USACE EMI 110-1-2908) o oh o oh CL L LEAN CLAY, with Organics, dark brown, wet. _ ( (Topsoil) 881.9 3 3.0 8 8 CL L LEAN CLAY, gray, wet, medium. 880.9 4 4.0 ( (Glacial Till) CL L LEAN CLAY, brown, wet, medium. — ( (Glacial Till) 6 6 3 38 1 1 112 ' BL -10- 09747. Braun Intertec Corporation ai -zo page m i BRAUN INTERTEC Descrlptive Terminology of Soil Standard D 2487 - 00 Classification of Soils for Engineering Purposes d Soil Classification S a Bowdon t hemaledal passing ft3 4n(75mm)sieve. b. If field sample contained cobbles or boulders. or both. add 'MM cobbles or bouiders or bogs" to gm W name. D../ D. C = (Dj D d HsoloontacusZl5 %sard,oddlvifheand'togmWriame. e GmvelswM5 tn12%fvre3reWlMdueisgnbds_ GW-GM well-graded gravel with sell GW GC we&graded gravel with day GP-GM poorly graded gravel with stQ GP-GC poorly graded gravel with day f. ff fines das* as CL-Ml, use dual symbol GC-GM or SC-SM. g. Iffines are organic, addlollhorgadcfinee to group name. h. it soil mnlams > 15% gravel, add 'with graver to grorW name. L Sandswih 5to 12%fines requiredualsymbols SWSM wel- graded sand with sift SW-SC wel- graded sand with day . SP -SM poorly graded sand with sift SP-SC poorly graded sad with day j. If Atterberg limits plot in hatched area, Sol is a CL-ML, silty day. k ffsolconlainst01o2g%plusNo. 200, add Vi thsai d alxithgraverwhldwerlspredomfnanL L ffsoloowtafns> M %plusNo.200, predominantly sand. add• sandy - d group nane. m fled contains>- 3D% plus No. 200predornirwrity gravel. addograveiV to group name. n. PI It 4 and plots on or above - A" line. o. P <4 or plots below 'A' One. p. PI plots on or above 7 9 lne. q. PI plots below W line. 60 G- cl V R n- 10 7 4 0 0 10 16 20 30 40 5o 50 70 80 90 100 110 Sams Classification Criteria for Assigning Group Symbols and Group IT Group Names Using Laboratory Tests Symbol Group Name n C Gravels Clean Gravels C„ z 4 and 1 < C < 3- GW Welt - graded gravel c More than 50 of 5% or less fines ° C ° < 4 and /or 1 > C"> 3 ° GP Poorly graded gravel' H e m a m coarse fraction retained on Gravels with Fines Fines dassi as ML or MH GM Sil ravel d 1 Fines classify as CL or CH GC Clayeygraveldla o No. 4 sieve More than 12% fines ° m u r Sands Clean Sands C. 2 6 and 1 < C. r s 3 C SW Well - graded sand ^ 2 z° 50% or more of 596 or less fines I C 6 and/or 1 > C�> 3 ° SP Poorly graded sand ^ o coarse fraction passes Sands with Fmes Fines classify as ML or MH SM Silly sand ro ^ Fines classify as CL or CH SC Clayw sand t a 0 E No. 4 sieve More titan 12 1 ro Inorganic PI > 7 and plots on or above "A" Oner CL Lean day k' n, PI < 4 or plots bet 'A! Gner ML SR m ° H Silts and C o m m H ° m urd limits less than 50 Organic Liquid limit- wen dried < D 75 Ot O d 8y k m n rgk k m Q ° Li uld fimtt- not dried OL Organic sift m o = as E c Silts and clays inorganic PI plots on or above `A "line CH Fat day % 1 m MH k r o m `o Liquid limit PI plots below'X line ■ Elastic silt Organic Liquid limit- oven dried < 0.75 OH Organic day k "° v m r ` a 50 or more Liquid timO - not dried H Organic silt k m q Highly Organic Soils Primarily organic matter, dark in color and organic odor PT Peat a Bowdon t hemaledal passing ft3 4n(75mm)sieve. b. If field sample contained cobbles or boulders. or both. add 'MM cobbles or bouiders or bogs" to gm W name. D../ D. C = (Dj D d HsoloontacusZl5 %sard,oddlvifheand'togmWriame. e GmvelswM5 tn12%fvre3reWlMdueisgnbds_ GW-GM well-graded gravel with sell GW GC we&graded gravel with day GP-GM poorly graded gravel with stQ GP-GC poorly graded gravel with day f. ff fines das* as CL-Ml, use dual symbol GC-GM or SC-SM. g. Iffines are organic, addlollhorgadcfinee to group name. h. it soil mnlams > 15% gravel, add 'with graver to grorW name. L Sandswih 5to 12%fines requiredualsymbols SWSM wel- graded sand with sift SW-SC wel- graded sand with day . SP -SM poorly graded sand with sift SP-SC poorly graded sad with day j. If Atterberg limits plot in hatched area, Sol is a CL-ML, silty day. k ffsolconlainst01o2g%plusNo. 200, add Vi thsai d alxithgraverwhldwerlspredomfnanL L ffsoloowtafns> M %plusNo.200, predominantly sand. add• sandy - d group nane. m fled contains>- 3D% plus No. 200predornirwrity gravel. addograveiV to group name. n. PI It 4 and plots on or above - A" line. o. P <4 or plots below 'A' One. p. PI plots on or above 7 9 lne. q. PI plots below W line. 60 G- cl V R n- 10 7 4 0 0 10 16 20 30 40 5o 50 70 80 90 100 110 Particle Size Identification Boulders ....... ...... ................ Liquid Limit (LL) Cobbles .... ...........................3`to IT Laboratory Tests DO Dry density, pcf OC Organic content, % WD Wet density, pef S Percent of saturation, % MC Natural moisture contenL % SG Specificgra ity LL Vgiuid Gnat, % C Cohesion, pal PL Plasticlimit,% 0 Angle of internal friction PI Plasticity Index, % qu Unconfined compressive strength, psf P200 % passing 200 sieve qp Pocket penetrometer strength, tat Particle Size Identification Boulders ....... ...... ................ over 12' Cobbles .... ...........................3`to IT Gravel Coarse . . ......................... 314" to 3' Fine .. ............................... No. 4 to 3/4" Sand Coarse............................ Na 4 to No. 10 Medium ........................... No. 10to No. 40 Fine .. ............................... No. 40 to No. 200 Silt ....................................... < No. 200, Pt <4or below `A" Fine Clay .................. _.. ...... ......... No. 200, PI it 4 and on or above 'A` One ■ u Particle Size Identification Boulders ....... ...... ................ over 12' Cobbles .... ...........................3`to IT Gravel Coarse . . ......................... 314" to 3' Fine .. ............................... No. 4 to 3/4" Sand Coarse............................ Na 4 to No. 10 Medium ........................... No. 10to No. 40 Fine .. ............................... No. 40 to No. 200 Silt ....................................... < No. 200, Pt <4or below `A" Fine Clay .................. _.. ...... ......... No. 200, PI it 4 and on or above 'A` One Relative Density of Cohesionless Soils Very loose . ............................... 0 to 4 6PF Loose » ........ _ ........................... 5 to 10 BPF Medium dense .... .................... 11 to 30 BPF Dense ...... ............................_ .. 31 to 50 BPF Very dense ............................... over 50 BPF Consistency of Cohesive Soils Very soft .............. _ ............ ....... 0 to 1 BPF Soft _ .. ..........._........._._.._.... 2 to 3 BPF Rather snit ............................... 4 to 5 BPF Medium ....... _ ........................... 6 to 8 BPF Rather stiff .... ............ ......... .... 9 to 12 BPF Stiff .......... .. ........................ .. 13 to 16 BPF Very stiff .............. ................ ... 17 to 30 BPF Hard ....... ._ ......................... over 30 BPF Drilling Notes Standard penetration test borings were advanced by 3114' or 6114" ID hollow -stem augers unless noted otherwise, .letting water was used to dean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix 'ST' (Split Tube). All samples were taken with the standard Y OD split -tube sampler, except where noted Power auger borings were advanced by 4' or 6" diameter continuous- flight, sold -stem augers. Soil classifications and strata depths were In- famed from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix - B. - Hand auger borings were advanced manually with a 1 112" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are Indicated by the prefix . BPF: Numbers indicate blows per foot recorded in standard penetration test, also (mown as `M value. The sampler was set Tinto undisturbed soil below thehoilow -stem auger. Driving resistanceswere then counted for second and third 6` increments and added to get BPF. Where they differed significantly, they are reported in thefdlowing form: 2112 forthe second and third 6" increments, respectively. WH: WH Indicates the sampler penetrated soil underweight ofhammer and rods atone; driving not required. WR. WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required. TIN indicates thin - walled (undisturbed) tube sample. Note: All tests were run in general accordance with applicable ASTM standards. Rsv7A7