Loading...
Storm Water Management PlanCAMDEN RIDGE Chanhassen, Minnesota Storm Water ,ffe Property Owner: ment Plan July 31, 2013 CITY OF CHANHASSEN RECEIVED AUG 0 2 2013 CHANHASSEN PUNNING DEPT Lennar 1630536 th Avenue N., Suite 600 Plymouth, MN 55446 Consultant to Project Owner: Pioneer Engineering, P.A P1T L L 1� 2422 Enterprise Drive 11 11 1 V EERengineerina Mendota Heights, Minnesota 55120 I. Introduction The following is a hydrology summary for the construction of a combined 32 unit single family home and 26 unit duplex townhome development to be called Jeurissen 1" Addition. The site is located in the southeast of the intersection of Bluff Creek Boulevard and River Rock Drive North and north of Trunk Highway No. 212, in Chanhassen, Minnesota. An offsite street connection will be required to access the site from Bluff Creek Boulevard. The current project proposes construction of the residential units on the north portion of the site, with the southern portion placed in an outlot and left alone. Therefore, this study only covers the northern development. II. Existing Site Conditions The site was a farmstead approximately 26 acres in size. On the east side, a farm yard area is located with a house and farm facility structures, a large cultivated field is located on the north portion and a smaller field is located on the south portion of the site. Bluff Creek runs through middle of the site from west to east. The low area around the creek is wooded. A large wooded preserve is located north of the site. This site has approximately 70 feet of relief, from a high knob just north of the site in the wooded preserve, down to Bluff Creek on the south side of the site. There are four drainage areas on the site, and an additional area is included for the access street. These areas can be seen on the attached existing hydrology map. The first drainage area (1S) covers approximately 10.0 acres and drains southwest to Bluff Creek. The second drainage area (2S), of 7.8 acres, drains south also to Bluff Creek. The third area (3S), of 3.5 acres drains southeast into Highway 212s drainage ditch in the highways right of way. It should be noted the cattle pen in the farm yard drains into an existing manure lagoon pond, also in the state right of way. The fourth area (5S) of 4.2 acres drains to the northeast into a large wetland complex. The offsite area (4S) of 4.6 acres is located northwest of the site and drains into an existing retention basin. The assumption is this existing basin was sized for the existing of site development and future "build out' development north of the connection road. In addition, some minor drainage enters the site from the offsite northern woodland preserve. A review of the USDA Natural Resources Conservation Services Soils Survey; maps the site with several groups; the Kilkenny- Lester Loam, Lester - Kilkeenny Clay Loams and Hamel Loams. Both of these groups are classified as clay according to the Unified Soil Classification System and are associated with moraines and the Minnesota River Flood Plain. This information was confirmed by soil borings performed by Haugo GeoTechnical Services and contained their Geotechnical Exploration Report dated December 20, 2012. The report can be found in Appendix D. L III. Proposed Site Conditions The proposed development consists of a combined 32 unit single family home and 26 unit duplex townhome development with the extension of Rock Creek Drive off of Bluff Creek Boulevard. The general internal layout is a loop street with the townhomes on the east side, and single family on the south, west and only the southern side of the north portion. Two Cul -de- Sacs off of these roads completes the site. The drainage under the proposed conditions was designed to mirror, as closely as possible, the existing drainage pattern. The comparable drainage areas are: Drainage Areas Existing Proposed 1S vs 1R (Southwest) 10.0 acres 6.1 acres 2S vs 2R (South) 7.8 acres 12.3 acres 3S vs 3R (Southeast) 3.5 acres 2.1 acres 5S vs 5R (Northeast) 4.2 acres 1.3 acres 4R vs 4R Ex. Basin 4.6 acres 8.3 acres Two stormwater basins are proposed to treat the stormwater for the development. Pond 1 treats (IS) water before discharging to Bluff Creek, Pond 2 treats (2S) water before discharging to Bluff Creek, and Pond 4 (existing) treats (4R) water before discharging to Bluff Creek. To extend the detention times from smaller /more common storm events a weir is proposed in each of the pond outlet control structures. This weir is a 3" inch wide opening in a concrete wall inside the control structure. The bottom is set at the ponds Normal Water Level, and the top of the wall/opening is set at the 10 -year storm event. The majority of onsite soils have very low infiltration rates. These low rates are not favorable to infiltration BMPs. In an effort to alleviate this problem, filtration trenches are proposed in the two ponds aquatic bench. To further improve the phosphorus removal of the sand media, iron filings are proposed to be added to the filtration medium. A Carver County detail of the Iron Filing Filter Trench is included in Appendix D. IV. Design Considerations . The City of Chanhassen Stormwater Management Ordinance requires all new developments to meet quality, flow rate requirements. These requirements are summarizes as follows: 1. Rate Control - The proposed flow rate from the proposed development shall not exceed the flow rate of the existing drainage areas for the two, ten and 100 year storm events. 2. Water Quality- Best management practices are required to reduce the Total Suspended Solids (TSS) by 80% and Total Phosphorous by 60 %. 3. Storm Sewer Conveyance System— Designed to handle a 10 Year Storm Event. L V. Results Topographic information was field located by Pioneer Engineering. The basins were sized to meet NURP standards with the use of HydroCAD, a SCS TR -20 based computer model was utilized for the hydrology study. P8 a stoomwater quality model was used to quantify the removal efficiency of BMP's used in the design. The following table is a comparison of the required wet volume required by NURP Standards and the size provided for the Site. Wet Volume Requirement Basin Volume Required Ac *Ft Volume Provided Ac *Ft 1P 0.67 1.37 2P 1.11 2.03 The following table is a summary of the results of the various HydroCAD models. The individual model results, drainage maps and ancillary supporting documents are attached for your review. Drainage 2 -Year (cfs ) 10 -Year cfs 100 -Year cfs Area Existing Proposed Existing Proposed Existing Proposed 1 8.81 0.83 22.37 2.15 41.78 8.52 2 (Pond) 8.11 4.81 (1.27) 19.32 10.53 (3.16) 35.03 22.30 (10.12 3 6.00 3.04 12.97 6.44 22.34 11.51 5 3.83 2.05 9.67 4.28 18.03 7.25 4 0.00 0.00 0.00 0.00 0.00 0.00 Detention Time Detention Time Detention Time Center of Mass Plug Flow Center of Mass Plug Flow Center of Mass Plu g Flow Pond 1 4.81 hr NA* 4.13 hr NA* 3.15 hr 11.19 hr Pond 2 5.18 NA* 4.51 hr NA* 3.52 hr 10.85 hr * Not calculated: initial storage exceeds outflow. The flow rate for all design storm events are reduced from the existing condition. The results from the HydroCAD model can be found in Appendix A. To evaluate 80% TSS reduction and 60 %TP criteria a P8 model was created. Local climate data for the 20 year lifetime design (1974 - 1994), sequence were used to compile the results. The stromwater system provides a relative 85.25% TSS and 72.02% TP removal for the design lifetime. Results from the P8 model can be found in Appendix B. Additional plans and supporting documentation can be found in Appendix D. •1i' 1 Hydrocad Model _P_I_O_NEERengineerin_g 24220n¢aI"'se Dn— avwawe)vo-x (651))681 -1914 Mencol Heights, MN 55120 Fax: 681 -9488 w prone eng ca ".asse9t'sV gsMAP 1 N N J J U) N 0 C 0 T O 5 3 U) O o _O O O U) LL cr) N ui W =o 3 Z = C7 1 o C 10 cl) Y Q N � Q X U W o � a 00 O N� 0— N o ` O N 0 O.2O N 00 £moo LL M T � " C) C/i arc Q @ N N tm 0 p U) Yao O O O U L- o > a T a 0 O a X W O O Y C LL J � a a c d 0 a° X W 0 U m a m N 0 LL � d v, x W L � N n � ° c N N � Q m C � C N c d N n y UU� w Ln ¢ mm xxi o P `w 9 yN 2 C If[? m 0 a nwy p O d w@ m ° ac7o N C Z Gm) W A C U O Ijnq' wnlon Ndy �a D V ° u a� n w o w >Z v ¢ m n D yp V t 00 D yo > 3° m o° n N 10 a m O O r a p O X W D. p o o o `u v IL II �o W � c Q m m 'D O L L D W m p o c °u m L O t II A u U m m N q E Ic m � m N (V w O L u G a > E 'o w .0 � N < H Z U t Di Zp U aE .�y o w r m IPD u 0 0: m� w m N W o. ¢� r D m N K m ° o J Nm L C e j N d � m N O V m ®m N x o m N nm ^ m p > T II ml. J� r N N fU/IL co Y N N � N d x i c °o c p c N v n D V ° u a� n w o w >Z v ¢ m n D yp V t 00 D yo > 3° m o° n N U (7 x( of mV U'3 UUU�i �yy mC c w w �af7ai ommQ. PPnr DQI�PU YI�Obt Nu m fO 0 N n r O ° m O ° D LL D W n r Z w 0 Iw N C °o m m E II 11 O E w m m a j E 3 F fO L m w o m Z � i m �^ m Erc N N � K � r m N II NL a N 0 0- � a rc rcr v N ° w � aaE �u L V m > P N m S 00 °2 n w` x o 9 G O V :7 y u ° m w U m mU, ma V 2 m a(9 ¢ o D r O �o'mo o° O m 0 0 P mPmm j N N 0 0 r 10 r n O m O fV N m ° o `u v IL II �o W � c m 'D 0 ' � c °u m °o t II A II �a N m � r N (V w O L U m O .0 N < L n •N c L °m L u 0 0: LL w m N W E ¢� r D m N N m J Nm L C e j N d N a L x o 0 U ^ > p > T ° D r N N m co Y N N N d x i c °o $ c N v n z U m E m It � m m U > U -2,0 - a Ury N N' LO mw Cm 1n °. > C /� V - N D. 0 o E tm Do mo vOI o o ^� N � m Ao °o m E¢ ZQOm om m O Erc OI o W N `m m N 0 'y �° h� mm oo wv °m yry TO X II Qz m J U iOI�VO OI N� ¢ U L nN ¢ lc = O m .GN U (7 x( of mV U'3 UUU�i �yy mC c w w �af7ai ommQ. PPnr DQI�PU YI�Obt Nu m fO 0 N n r O ° m O ° D LL D W n r Z w 0 Iw N C °o m m E II 11 O E w m m a j E 3 F fO L m w o m Z � i m �^ m Erc N N � K � r m N II NL a N 0 0- � a rc rcr v N ° w � aaE �u L V m > P N m S 00 °2 n w` x o 9 G O V :7 y u ° m w U m mU, ma V 2 m a(9 ¢ o D r O �o'mo o° O m 0 0 P mPmm j N N 0 0 r 10 r O o ° o `u v IL W � c 0 ' � N °o t II A II N � r N w t U - v 2, n °m L u 0 0: D w m N W E ¢� r D m N N r C e j N m x o 0 ^ > p > T ol"p C m c_ N O m A L O V � m ° > O m > II m p U II n � a m W m v°i L �m W N m M a c °w Z C o U m vi 11 C j LE « W �a ? N a > E - r N O L J w a m d d m and a ONONNI°D ❑ t W ❑O °A N m W O W L n o pv — p C ❑ n C O a C ; ❑ ci n E V 11 U u _ M 9 b N p F N 0,2 0 2E N 6 0EEE m E c n 2 O ? rc ¢r O o a w E >» °om 'c °c $ °nnn N N ci = rN N p fm e Ei E C d c N C OL L n a L L °o°°o n Z m E ° v L Id II o O w ° n m n m m'w' 0 d N @ W O J « U j (/1 u = > E_ a w '� u > > E_ U �VC/® 9O 06 r c N m m °oo In f- o a n ry rv�O° EV EE 't Mman x w o yo oWOQa m > xN _O)U' Nam 2'- v UmN N SN ❑ O O� m p II II II 41 II II II II 41 m v A a E a 3 ❑a��� u 9,00 m U y'A dOm N n v'm = o o o E m =om N U r n n aJ O Eo N C U b N m r adi 'moo rO NNOO 'cy° ro X >'O II U� mNUNi00 Cam II V� LL, Lf mm J V1L rc� max rc rcr ¢ N � I II �[ m ea C �u N L N F� a O O ° W C U N> 'x n' W and N N N ° tea` O x W L A E E N U (7 2U am0 oy (7 x O Doo To mQ oitc> mp0b j O V y V d— Z > MZi n �nb��ayaE i O m N y m N N r L o 0 O n m o Q N 3 ❑ II O a UJ m 0 Z o 0 s N N ' C O m Y) N cs n y Z U m 0 ° vi I� ❑ W 0 4 m m IW > > m J m OmN WLL W z U t vi U � .ter N o v E '-H ' 00 > E ® a m t 2` O N � Cn U c 1 NN N m K % p Ei ro O m 11 ' J NL O N LN U r �I°yN cn K Kf a m N o C t aa N O J MpN mW � tea' % soo 11 ° 1 LOO Nn =o a pon p W ` O ❑ L LLI ❑ N O N N O m N N m �� O LL C p C LW N < aOm OO W� h 00 OI U V 9 EE d °EEE °o o ❑m � � �N,., o m ° m ° W W m O O IC W m O O O N O° m E ❑ i> d »> °NNE m m'm� O U m = m Z' = -� '°p011 m mU Em mr,4 ❑vw 6,4 _ t ` E E 3 0 00o E E o00o mt _m_ m`u �= vivo om Y O 6 Z u W � UTj m yy=j O� I111 Q i'mmON m � TC O V 0 0 0 O W O O 'b N m m Q m N F m OU Il m =OO m ° g noo HmOO Noo m EE t vm xC p1 Q m �u 'X ,per o Inn m IWnnll Wm i 'off =v Wp � 3 Km .o0 ❑o cw 'i v o m.` ommm Nd° OOH =o °c�E E "`a �m Aux o __O aU n` ow ¢n > w ❑ o" N " Q N L o. m m � 0: d a m p n m a O II d - a O L y Ow 6 2 G o w U m E 11 Ic L m m O U'U' @❑ �Q D v O m U 2I °`m maw .W Tmi a > E o m m s go x x W E¢ g ° n a w a@ MLLE T r a -�� �e om� � ❑v 0 S y Ummnnn (9 ° f Nm � °'oa rci g rmom mar LyN 1 yT° �me-ON Nrm mvm 11 Uf Wad OI N Q Q U G N H°° L L= N N v E m o o m _ = T rcr- U Ij U Q L ❑ I;! ��OOI Vt NI O U m ❑ N mm � nU o m Z U m m d m - m r 2 U J m�m h Q ymm Wy J ~ � N E N y m N n r L o 0 O n m o 3 ❑ II O a UJ m 0 Z o 0 s N N ' C O m Y) N cs n y Z U m 0 ° vi I� ❑ J 0 4 m > > E m F W z U t vi U m T .ter N o v E '-H ' 00 > E ® a m t 2` O N � Cn U c 1 NN N m K % p Ei ro O m 11 ' J NL O N LN U r - cn K Kf Q L ❑ I;! ��OOI Vt NI O U m ❑ N mm � nU o m Z U m m d m - m r 2 U J m�m h Q ymm Wy J ~ � N E N � Iml � 0 m � C N � O 0 t N d Ol 0 0 OI O C U Xa W O! N m � N O N d �a U f7 N SU O °oU n ON U O UU mo and xz`mo @0° a m0z U aU' nn n m` Yi 9 m 0 N O � a L m O ❑ II 3 0 s co a °o a N N ° o Z C ui U d m L IE °m d E w° N � a > E p N y C L U- o m NO d III E t n N Ew O P O m N �Y� 0 Nr ° E lV om �Pr 0 o m n1+lOPmNmM `L-'yo y N m c On�mnm�n b N m y•mr k V JES O II _moo yL O ❑ C m LL ¢ K F 0 Nr ° E lV �> 0 o m n1+lOPmNmM `L-'yo y N m c On�mnm�n b N m y•mr k V s � O II _moo yL O ❑ o m LL v W c °a m� O 3 P O L d � c Q N o f o `mo M z c v v m t n n cm O r d E y wQ 2'w ° o h t N Ed 'o m° t p 5 o r 7C n o � c ❑ I I (7 O ; ❑ n d I�jL j e — a a N LL m S U NR' N r• °' S o f o m d m OO 'V ❑ E N L Im m (7 u W U m ❑ J m w°i �y > N E w m U � > m E ¢ a vm m w mY > o N t vi U, 10 m'2 iJ W c` 0i = w O In OO C 0 LO¢d r 2m w `u ❑0-33 y `u o m¢ 0 p w mrc NY Unnn b 0 m nIY OIO� P ° d C Xa'- N m NNOO m II (JL N P d C N N J m< M Ol d< �N Q17�PP UCm aN �a �' rcti rc rc� co m F m° y c J f Y d N tll A 0 n o V O❑ 11 LL - 0 Z o a N P n N O i c ❑ d ,n m E 11 11 A y a >° E � F N w b b r mOo � d X11 E °oc O O m O N m Y o Fo m b r 11 h L a N n 0 0 � � T K K F U x� °oc 0 (7 x UUU OC ojbUa `a =x=c� ma y m V N U mL o h 3a "(7an °n mmnn° U ° 0 0 L N i O O V � N m y ❑ J m x m oo m° moQa �-m !m ai de o % O O rON N O NN mm J ° E lV �> n1+lOPmNmM `L-'yo y N m c On�mnm�n y•mr k V s � O II yL O ❑ o LL v W L O 3 P O L d Q N o f o M z c v m t n n cm O J d E y wQ 2'w V o m Ed 'o m° N '^ r y E o N ry (7 O a j e — tc N m m S U NR' ° E N �> n1+lOPmNmM `L-'yo N m� On�mnm�n y•mr - V II yL n K KF- L L 00 Ip N cD �a O N d =y O = o N pl O C U a� X p W Wf d N N N 0 tea` 9 a W Q A E E U) C c E c E p a > m o 0 > d o II W 6 m 3 _pN w m O J O e CON o a p W 10N .2 IC 11 m D N p r O O Q L � NO Q N J wpN EI O ry O �j Iloo II o ^000 c< € 'o E Wo L d D y Ll7 6Q Id � n a W ` ONnO ❑ 0 O W D L jq S'0N R U a O b O O 'p la O p w 0 m N L4 m 0 O d d oEE w d d d oEEE oe 9E ❑ W O O IC w d O O O tn+l m O Y V X n Z i °» E o. »> £ oo °n w c °c o w vm pNn °n 'u om wma o _ y _w N❑ nM O_mw tU 3 eLG d eLLL p°w ICQ NN US n0f °$ °p r E °o °p n� ==° v cu 0 'o II ObN D i O�MN o G a i-'p CC NN >p �@ pVG pG`V'G �VY'0 06 II 11 QN N��a11�N Cn 0� D 000 O1y00 SN da Q Q"CON II W NOp ~ Na6 EE 'tWNnCN Wd' L w 9 N p O E� 9 'a C J Y _ °o N m � ov a p II II II UI II 11 11 II Nm a W V � � u °o ° o o: °pa a` pa v jL my o Q t ooh ooE '-m # E° 5 �� of u�nmmm a i ■ a / _ - -_ -- __— �� � \k � i� . a.� �, � _ ♦ ♦_ - -'tom. � _ /. ♦�A■;- _. i < / D1 1122S9PHOP kCMAP ' xxx ' 3R xxx xxx IN . 1 '" ��;68JA499 I I... .. I. .. a .. ... r: r... �.I� � PROPOSED D R D1 1122S9PHOP kCMAP ' xxx ' 3R xxx xxx D1 1122S9PHOP kCMAP 3 � S K 2 \ U3 k ) . _ /722 ®� ` ti- &§® K 0 f _ dam ` ƒ \ k7\ a- k ° � \ \k § \ /\ §7\ tE, m & a�) t;) : $ ± K 0 IL ) ( . c6 C % f e 0 C6 � ƒ % 0 » CL o \ o \ f 0 \ ) > � \ \ i \ LU h m r �s N m C m q � C `cQ d W d N N d � f_ , O O a 2 d a� N C O` d U_ is E� qa Ol W N q N Q r w r• a N, N \ I m CD 'L `cLL U m N t N ` Q LL� T O O a` Z m a_ ,G G Q E� q a OI d N q N Q e• d �a D � m Q tl L 0 c o O m O � 11 N � °o C L d ` d E N A � d > E � - F W L` vi n 0 U N yll q 7 c a O W r cv m K m r)7 N Uf N y N 0 0 c � n rc rcr r y D UU,°U >x �.v O m10 U' nU` - D�a " >Ng an3 IWnr O n m N p a Fa a m° y U E y,4 _a °o mG P N C M J 0 r t t of °vlt �t wW Im'+,N .o W o mW it it °n lir m y,L 2'O ll0 N E c m h E E E mOW m m II EZ Emr e Z e Z � U 2 .nNa WU NU mU m= mU O O O m u O 11 N F F IV �12 t u ¢ 4 r < 06 r E o o o ro U c K K K K o Tr ac E = Q ° ° N N U ° N N O P C C C C C L L L L L U U U U U a a a a a !O N N N N N „m+ a 0 mo � 11 V O v L y P n N c C n d L IN W d E wn m � a > E 0 O UN N xm q 7 c E N cl E i N O W N � � r N N II y s y N 0 0 m > > T n rcr U o C N U U S o ^ p 9 0 0 -,D0 uS 2`yo U LjZ2 umo n w > n Q a °ye D y SNP m� >N pN•N IAN > n�O °n °n °nmm N nemn oa�i °r �� m olo °im �lu6 �~ r C O E o O LL LI s q p O II m -D d V P L N N o °o N � N c C N d II E 'a, a E n .d. � y u > E a U w O N Z E r� E u W N cW P N � K � r N N II N t L N 0 0 rc o r 't tt tt tt tt tt Bt tt tt 4N mm o0 0o WW Nm o ry m, m, pj pj �30 NqCOj' �m NN PO ; rc — — c5 Zo `0 �0 c0 o c0 c0 m m t t t eEU A m n P P N n E it ry O O Iry mF fq � N n n 'IVY n II a o < it m m > � m o w w w mY a a a E C N N m 0 i o 0 o 0 p O y i! b LL C IL 6 yLL tt O C LL D D 6 E N !O N W 2 6 0 W U � N rl V N LL 6 LL W L L L L L P L q 0 q W A C C C d d 6 N n nc1 N N I II �[ W m N � R W N } N t N W � m U T U I jE O x O o 0 $ S T N ca = m m R ® v a ado w o z m C 0 U m d °o alp E>,o wm U O ® d N O! m Q Q m U —ax 0 i "m q a v w o `u2n V aaE Z'� 0 a m >� m V: m N c N J f n b m W � v � - q a a° ag 0 >Omo ma >AN 01 °m o3 Ul r m N b w uia� J r C R r W W N N M c E u a J N Z E E M A c m IE (V � 0 W G � _ C �o W N O > p w II > p w II Y o N d C t d 0 II N � 9 y W n y m a o m � 0 o C o N e 0 0 R m m E I� L r E q n N u o m a > > E_ U N GT c �U t U n O ° o E T S ® ° O o,E R Om m n J N .w Lei L.. u d C O m q ° K ° �^ V! O L-'nn -O w �Q LPV aN N R O N N O O �Na N N � n O A h N n nc1 N N I II �[ W m N � R W N } N t N W � m U T U I jE O x O o 0 $ S T N ca = m m R ® v a ado w o z m C 0 U m d °o alp E>,o wm U O ® d N O! m Q Q m U —ax 0 i "m q a v w o `u2n V aaE Z'� 0 a m >� m V: m N c N J f n b m W � v � - q a a° ag 0 >Omo ma >AN 01 °m o3 Ul r m N b w uia� J r C R r W W N N M c E u a J N Z E E M 0 11 L O s m O � n `a ? o n � II Im m E n � N > E c` N� U A O V xW OE � � c mm n °w N W KY f N N 11 �� D N O O c c o K w m 0 U 0 u wmo n� mzy U =oe o9 �Pmm ms 3m� n� ox m m n h J F m O � LL II C L L O _ m u ac [ C w O n L U A N O Z N " M °v o L o 1- N E II � t £ `m U y R O m a > E W L ui n o UN W 1 oil R J c E t� `u v v N v Ew> � N W K W r> m N Y � N O � 0 K K H . z U p o c � w N U x o q o 0 So w OU m¢w DW -U' Q u't [jI @wO W _isa `m oZ U _ > m w O Q y ° @(7 vat ry oPOm 04 nnnn �/1 f1P�OmY°] rq melon AmA �� A M m 10 J IE p = p > p w II > p w II > O w 11 J J y y J 0 0 5 0 N e 0 0 v N Q c N N Q L N Q 'GS �U tr O ° o u ° O A p �mm ° 11 OO O 0 �^ D O L-'nn -O O o LPV LL N N W N N N W O A h p0 L ❑ L N v 'o Iw O N IE O CIS 'o E N q Z >> w m o o II C v o 0 E» m° E» w E e > w its �2t R 0 °.00 H R aoo F R 00 E i3 v.1O� °o E °�� °o E 3 J $ 3 0 vo O �42 °m How °m '°mm r °q mm Po V IW O U 9 V m - m T d p IQ II II w Z Im II 11 l9 Z IW II 11 z m n n y ¢ 3: m c a ; p C Z O OCR E x O O CC 3, EEO w °. _ �O O X S EEO 0 11 L O s m O � n `a ? o n � II Im m E n � N > E c` N� U A O V xW OE � � c mm n °w N W KY f N N 11 �� D N O O c c o K w m 0 U 0 u wmo n� mzy U =oe o9 �Pmm ms 3m� n� ox m m n h J F m O � LL II C L L O _ m u ac [ C w O n L U A N O Z N " M °v o L o 1- N E II � t £ `m U y R O m a > E W L ui n o UN W 1 oil R J c E t� `u v v N v Ew> � N W K W r> m N Y � N O � 0 K K H . z U p o c � w N U x o q o 0 So w OU m¢w DW -U' Q u't [jI @wO W _isa `m oZ U _ > m w O Q y ° @(7 vat ry oPOm 04 nnnn �/1 f1P�OmY°] rq melon AmA �� A M m 10 J ry N wm cv � c `ca W W N t N c c O_ O S d pl 9 � y 0 U O UI E ma Ua O) d m � N° m tea` N z m c � W C t ca W d N t N W m O a` S >A a� N C O N U MIS Wa m d m � N O N pr —a O a W a L ° d O: E E N m r oN r °w c; 011 pll Um U¢ O a O a O b ° O O C O L O o(A ON mfgd dw omyeM�ioma d .-. N Ndry m N N v _ d>'N IINa ; JmdU' Jmd NO zb'w b2 N6 g )'p_ H m OY N'i.Om � u D7C �E1 U >�Ool`!U� 1y1 oa O ^.UU .-.c dU SwONu oa ;ado�m ba_m ��O O.aL�UO NWOm p �• O N W ` O ° U O .` 3.-5 �Nd13 °n 0 U N C m m 11 MO d �a m v m e a E> i ❑ ❑ O;�U rOU afr rc b m u E a � O ❑ N d � U H 0 b � o U 6 O 0 N d t C N o`_ w N a N N w a d q N ❑ w U N 0 9 O U m U N CD b °o m m co a v w w P N w r m m � 0 N mrm��fJWwO me'mrO�mN w N m m r W W m w Nr01 ^fmr•mm N N N °o °o 0000000 0 0 0 0 0 0 0 N P m m N O N Q N mmmmmmm�m NwW ml�4l OiNOm Pv�u>mo� r m m Q m W< m O m N W O N m O w NPmmai`emmw °o °o °oOOOOOo O O m O N O O O O NP m1�WWO�N mmmmmmmmmm w > m N .- N m o m W Ilw q > q U J m N e ° E O W v E T' N m ¢ m 3 d O mm � � o �aai ui o�n m ° o. Q Q Q O O W N 9 O II N N ° ommh u 9 0 c Lld`b Wm y ?Ilm u'v a °•G o a ° EEE o.O m b `•m W > E > >> y O II N m W Z` v a »> b E etct °m¢`m °yam O O E II m o C_ = E E d @� o0 ry� p1 j r�I1 9t�¢ pNNN mN�rn Eo@) EE ca N z ommm aI� II II 11 W �q a � d II II t ° o C s o E x 5 Y m °o w� m me O= o3m9 �m rc b m u E a � O ❑ N d � U H 0 b � o U 6 O 0 N d t C N o`_ w N a N N w a d q N ❑ w U N 0 9 O U m U N CD b °o m m co a v w w P N w r m m � 0 N mrm��fJWwO me'mrO�mN w N m m r W W m w Nr01 ^fmr•mm N N N °o °o 0000000 0 0 0 0 0 0 0 N P m m N O N Q N mmmmmmm�m NwW ml�4l OiNOm Pv�u>mo� r m m Q m W< m O m N W O N m O w NPmmai`emmw °o °o °oOOOOOo O O m O N O O O O NP m1�WWO�N mmmmmmmmmm > > > E m E m O > d O m > O 'L > O w > 'L Iq O II N II N m J W N y U O O C Va t ° o O U U o # L'S L+ m m II 00 o 3 n o a II Www b Q y a 0 ymw a 0 a.Q-W� r hen 'o Q L L OPP o ONNN o p W t pmE t o °o Z � " C c m b=ar lm . O oil 'arm oEm on o E E m A o f E ° E E E m E 1O � m 00 II N 2.O II W 200 _ mW. A � 6 m 0 .-6-6 6 W m O O O 6 > >� Owll 'C 1p Eii y E» A E _ mNm ; o SL m ; e LL m E e1°LLL 'CNQ d� O mON F O 000 �m ° E E 3 ° E r E m m O N E 51 r•ijV b U mYU b I?� is II 11 °o °o °m m m t w� dm m a F 1p0o N N�mm m. EE oo + .b rvry + N°o E69 -vii `o °c c a m m v ❑ [ ❑ 'o °Iln m 'o °nn m 5 II IIn II T_n a� @ c Z E 6 ; w c_ ¢ ; m ¢ ; Z w W w C C °° IL 0 00 i ooE " oo53 E ? 5500 w o ,Py cc _50 o rc CC O'c _SOa Oaf. m ¢rna ON aU rc b m u E a � O ❑ N d � U H 0 b � o U 6 O 0 N d t C N o`_ w N a N N w a d q N ❑ w U N 0 9 O U m U N CD b °o m m co a v w w P N w r m m � 0 N mrm��fJWwO me'mrO�mN w N m m r W W m w Nr01 ^fmr•mm N N N °o °o 0000000 0 0 0 0 0 0 0 N P m m N O N Q N mmmmmmm�m NwW ml�4l OiNOm Pv�u>mo� r m m Q m W< m O m N W O N m O w NPmmai`emmw °o °o °oOOOOOo O O m O N O O O O NP m1�WWO�N mmmmmmmmmm U bN Np N1° Nm n NN mm0 WW mtO 00 ryn O' e0� m0 N o e m PC II IN IIN Itm �CJ I� � 00 fjU ON fOe ONTO I^()� n � 5y L 6N Dui t ,o N6 In o w d N N N 0 �� ❑� o.@ ❑.G ❑� oTwi ❑'G LTwi �.�' 6Tmi I 0 ? uu 'u Twi Twiu 'S O ° mC 00 O� O Oe O C Om IeON �� NN OY] mr0 In 4 O N m m Y CI m IO $ < Y CJ N Cl rL I W E w= m C w� c �� o =�� 0o o o c o ° c c €� 0 % 0 0 0 �O =0 -O c �N 2 1° E Ez EZ EiO £Z m o c N 6 T o U O U U b U � U o U W P N N C C ry_ N C ry d m E pE @ m a m m ^m II K d IC Ik L 1C rn no. K K K o y R N p LL N C q m « N O ~ O C C m 0 m m « E « Ol a w N O C Q O O N U N Z O '.k p 9 p p ° # � 'CO m E E E E E E m °' If w z a° m w m m U R m r V W A L L L L L N e N O V U U V V V V V p V 9 9 9 N ry y` a a a a a a m m m m c c 6 C IL d h h o Nry w m � c m D p II ~ C ci II O v O INO a U d ly UQ UQ W Iq V R N O W m IN p1 `pON pl mlm 3� ImGU L `u P w C Y II w m E N W m 0 O j5 O a O O �n t N ° m Q .O o ❑ JOr DM17 m009 m Q 11 N O m v ❑ N O D m N h O m �� N a IIOa SNNJ W; = YO nYN tel Ol m C 9N O 0 Y E� hNN aem 00 OCbd LN m�N pl m U[] ObO q m d O N p m d U�`oOo NU�`u m C« C 11 II 11 0EEE N ?� 3. m ❑m O O N �ryoc m w II �'c ^a Su�In iL Xc•- N ❑ �juU dOO �dU 5 o om w m700 -> >> . ° � > m c o U ❑>d Co p ' EF O m E _N= d o .w ❑d -w W t2` T .S _ LmN w N L5 6 Nh mm N O p > p C O O U 0 E m O O O W W U O N S U O O C U ° G'G $ m o ° m ° m ° 2 ® > Cm n O O 1n 42 h U O 00 rn m m -,1 hUUG 04 Oa II II Q N�mmON m O W :a m Mao °o E E Q m N Ol h b Il yd' Cm° �n'd" o0o v� COZY ry it' > omEm m ON m p m E « N cum W E C m m Q � 3 o >0 Vi II N 2 ¢5o a 0. Q U ° LLd° y o ee m wv o t >f 2 ❑ 0m m MIX d MID ❑ mo`k 1 l_. L L N O R � m C D � m C C R W N O t N m W O O S m m a_0 N c o` m U E� w m oa � N U N m �a N R N aI ` m aft 16 a `ca m N O a � m " t } t N 6 Q m W � N m � (n N O Z• o m U o n C m C m t m y L N U V O a m o m D 0 - v E n o N mQ 0 o vj u L y 0(7 2m E o > E > Q U n a y O 0 > m O` N m O a x ® E D� m o O E 7 N °e E v Q 2 E pj W N y u o.d aaE 41 v Z. ry II m y OI NQ LN N y y G C T rc aA n min ri E t ^c nr m� N Q E> Ew W A p 4 H m m v m m Q m m ad ~ O y' vir Nrn m i p N d K C F Wm C N II 0 t E ° L N U Ti O a m LL n 0 - r m o N � m 0 o vj L m m u, E o ° a > E_ e n E y O 0 W o O` N a x ® E D� m o O E 7 N °e t`c v> E w o°o N pj m m Up m�S �O y OI NQ LN N y y G C T rc ¢I- c U m C7 y U x m o m ° 0 ijZ2 D1d0 nv °o0 >ta m @(7� aaE do nn333�v me n� mQOm Q -° m AAmm y` NN�N OmQ t-' m OIAO t�N �Om Cw N N Q Q A m J y f 0 W d b N U O y U E y b d P m C m � J H N b � N q o t' a d O v o ° II c .o 3 p e _O v L CL m °o Nm C oW C � m N d E II a s E a p o m a > E y L N U m �'m G E t'= O d > N � E N m m v K > H O y P O L N 0 o O n > > T z KI- 3 OR O � m w I I L C r m O O n r U r °o N m mi 0 V o 0 � N E II L m m u 6 y N o v � > E F° N y N e W O y =d r x` E tp C `u E y � Ew m N N f O N � II N t L N 0 0 j c p K K F U � u y U x v � °(7UU NQd D fyq yytUn m< m m° csau � °ati U O m m p n`Uoa aaE' aerie a`m amQ v >m0W'm ^� > a n� 3� w e m mQOm o mAAmm y O CAO N m � N r F 0 `u v ami ° A � W � m v U o m v > 0 N h w n c p J O N LL N N ,m LI r m m n o y 0 0 II m � a N � N � N o C N m I� v > E W t Ue W N N d x� r =W m `u Ew V1 m Ew m ry m d K > ro m m y N O O c c p � ¢r � M N N N O y V � U II r a u E N o y m m E c ca w E c > o w c w> o > o w c Y J U W ry 7 O A W 9 N L } d Q m It o A c A c A E E Y A 'w W 2 H L c m c 'E O N N c '� O N C N m 0 N ` t N E� u o A u o A w> " o> E_ � N � tiry NQ O'y W O N =1 O N N E -rc xT ® j Y J U Y q N ry Y J U DI O LL W ¢> "pro LL Fo 0 a� d e P w d¢ o Onn aN N a N Z i= N o m v ° K C N o 10 n c y •°- II w° n v L A n O 9 wti Iat O Q L N A'ti 'm N Q L .0- E 3 N Q n J m O>> -6-6 II d L Q N O O E» C w N E» vai 0 O D E» w rn O _ 'O A LLN ° A m W w m N pOm LL E 4NN A00 ?Moo O O. 6m�P A10PP O,MW 0 4 A�.On M�mOW M��W ~ Do 0 S W Z E 0�-r' n E (]NNN OVA 0 CA E Oy NPb��N inn 00 o 3 O a O yNN X O 0 NW ^CP'1Pm Nm0� O L C G E 0 t O ?� W q O MUU M N Q _UU M C N'N d N AU L Y N WNfPO NN L OI U o 'o 5 O. p II II II N o II II II E'E vpi A o1EE z A o E EE mU)r mi A CI a fn z EI 2 >> 11 N t >? II w Z >>> i0 G a E N 6-5 >> C n Qom' " N O O a» i Z' A O O O °>>> q tj LO o 5 O N N N v m P M OE - �° W E 0 '� E N N w m N E N U wO A N- P M m P m W N 0 T p OI N m E 3 A A i L.0 A 3 N w e LL A E e LLL CIPY¢ 'po A� hV Nn 0`MNfpNnW U._ 9 o m E Z o E E P A t m -. A `u _ O C4 i,6 E NON y N a II D P��� NNN E 00 E m d 0 m a b N > A N m M M P N N m m -Pm m nUu .'G YAi N u'Ei'Ei o II II ¢ ax nP�o�P. Wn �NPmmW"mmW N°P-- EO EE =A U_/y 9 p m c m E26 O E O E Ellin A N o II n II 4J o " II n !q II II II n Vl a Ua Z A Z E i A � II 1°A ;" � a 'p Oy00000mOm000 O ^ Z O O N �Y y 'L A E > Dort � ;; Dort 'o ;; oo €E 5 A �c ?yt m m m m m m m m m m m a o cm° oo o mm - o'SA A o O N N O y V � U II r a u E m m E ca w E > o w c w> o > o w c Y J U W ry 7 O A W 9 N L } d } It o J W 2 H L O N N O N C N N 0 N ` t N E� u E A u o A a > E_ T U N � tiry NQ O'y W O N =1 O N N E -rc xT ® E O U LWW as N ry Ew Ew oo DI O LL cod N °O ¢> "pro LL Fo 0 a� w� < w d¢ Onn aN N a N Z i= N O^I� U 0 2 L A U Y U Q N U l UZy U 4 E Z- l 9 AN O N Wo >� m m m cW N < r r N U u E m E w E > o w c w> o > o w c Y J 7 O 7 J O N e ¢ L N Q L N o Q C e ' N o O LL LWW as " dTT DI O LL dmm LL Onn W O^I� K C N o 10 m v L 0-um n ° wti Iat ° V A'ti 'm .0- E 3 N °>> m O>> -6-6 II d L Q N O O E» C w N E» vai 0 O D E» w rn _ a L L A ; �LL A m ; a`LL m pOm r E ° ?Moo r ° boo l°o Do E n E T3 P E I- o 3 N a�� n you E E 0 _UU C O MUU Q _UU y N'N F L MNN N WNfPO NN F o E 5 0 p II II II N o II II II N o z A a CI a z EI E s D " i o 5 OE o 0 mo °. - C 0 w a,- C O O � � L m oW o11 u ?i w II 1"l0, p N a UQ j O Q W e.LL p O � ?y d Op.0 OC ` O n 1'oN i°II Up NIIU d a _ V ^p rim _ o 0 b= u n J m O N E' r ° YU ym� w C cLU ii ° w Y «N N_ J BOA Cmri 'liomc d o d 5in� n° m :o °A 0 d N�d1N1OON�d i' K 01� OEW 9 6 «0000 mIq N O_ JIOa Sm�11mL `. `C W O1° Od d m OV NNb 1p.o v ~ °m nU O'°Jnn m viW O. o auJ m o0 h� nv°i i0 mON �• >II 1`C10211y N3la0 -O W_ U OI OIO m0 d _ Lm w UU .Q CO �O O p U o S 0$:•�oi - 53C ° d °vo5 m`—° N pU D O N O U II — n 'C r 0 ° E 11 _ d II d II o m ll =O E O 3 o b a 'O 0EE 2 �€ O m II E C N E W m I O 20 uo »> l 0 'GSSWO ^ o0' E E o 0.�E..w, rU awo wU o5 Nml 0 a of O o II II �� o .poo E mc`L`L c =L od`w °om a u ab m U N O O m L m 0 d V — , 1p d O 5 =Ux>vSc ? E o0o ac —� To 'u ONxU .3 n Lc c c w� °L� N w Ew 6t Ulm > ® >O O n °0EN wCNGG ~L 00 —_m >� Y101 SS E N E wm m 1mn0 oaN W vi = =mn � ' o ooe II E m I�O N E tm U E m 11 xx MO.— 0a 0 3 N -o's o o 1a C °m 9 Il n 11 II inm Om m 'oE 50 U.o� KLL 0 O 0>' d ay 3_ c «mo oo oo 0o mm OE m w m Z.S ¢ l j 0 Nmo U N mu 33 °w LL� > > «nrnn u 1Cm Nyy '> u ooEE m �c d mmmm >� 'ax o �-OM` mm —2 > w o N P`E ON OF ry 'E d W m « N UW O LL IL O o O O Imp O w ° N O a d O O w W v 000 II y KWON 'iw0 W d U 0 L Y1"�U YN° w N N E ww x .N- m ° E mm- - °o °o, mm 'p a II mm � J OmCNl7N009 E i-• O �Nrr N II ° W N y N_ ENpON�m m 6.-- d yNAA Om EW y .d.� d«ONNmWOON�o O N y 11 m O N y v 3 O W m m O a O d A m N Cl O N >�mIIN O a 1110 d L� d WONWnmm «O — m6 Om 1p6 V0 O '0 m(V y «O ° Nl7NAmNnO Cm'p E'WNCm'd d /� Z C jL N d =1 wC «O >_ CIOwGd C LINK W� V W UU m U —a o ` ° w LEIN _ LEIN _ E IN ooNC 0 8 W@ w v°n m 1 0 UO i IIc _ t00 N0o l o °Nd m m p1°d d 1�U E o m 0 oUa d f ohm_Nmmmo1- .000a .3. E »> oo E.d-°K Om = o N E r L o N�2 NAA10 WoW«W2 E «O «O ° °O— mmm<o N m N O x O m— C O x g r!- IC N O U L_ d 0 L U O « @6 d0 U) m NNN dIINo E 1N C NW�N > wl`YGG FQL it Cn O m m Lm 0 0 t2 ° -'L�Q vN >N N MNNr'ONNmCJm N m C N `U 0 0 O Y II II ¢ N Z N W m m O O m N N O i° II NO 'ate. go Ld oi g Y «r!r! 0 W EE .Cmmhl�OiNMmNNN C oiuL `i nEV '+i ��1 N1 9og o G c.+ L tq N U r N >o ry 3 q N _ m p m G 9 > u u ouE> °d Nm =o _ E '> "> �YmU m II II n n w >mm dm mdQ �a c E awyd c� 0000 °o °O °o °o °O °O °O °° °o °o a0 my d rU N� Q 32' ccww LLQ E 'Ww o Ni a to m a 014 a vi N u N N E 11 2 3 3 o m a m A m w m m m m m m m N my >a u u E .-. 0HE 5Lm 0 ac u a °° E o w Ia o a = -0 a` KWMI E > 1 U oUC C9 cNO1 _ A 0 nW mu U -u vN °o9 of a "n3? m A n 0 mnlo: ommc n w W W O A v¢� m N�z U QZn a a E 2"c 0- wCD vx �vmia vs P OF m w N "°+ y A v c r L` 0 a n o o ° n E 'a m _O m L LL o °o C N o W C d E II Q t W W « � y U o v a > _E- � � o W � L U o � c E < °W � Ew N � o y N m �o I- o In n h t aN O O C � a rc ¢r 4 i °o UUo Ut >x a °uaa q U Y ntj .0 dN o: A A o e mPOa mrry co V m W U W v < 2"u �Wp W >Zv U a a E F'c Ado UO� m�oP mx rN >� 3 uia n¢ m ox y� G n IL W 9 II L 0 0 Y v o � n V ° t UJ `� m °o c yQ m m m W N o C V N II « � N v > E- a �' o N U E t` E � > mW � N � r °o II N t y N O p p n > > T rc z I- o�� 00 l0'2o no �m mm r� ww mm mm o0 0 0 it lir it Ir as mm nn �n P mn P rat- ca o o�, o ❑y o!n o� ."o � Y o A x C x IC ItL GN �`y V °N Cj 'G I3 m N N m N N In I N C m m r N Cd t d'(7 K� 4'r ll� KN CII 3i NN f C� 33 0 °O PO � 0 ¢ W 5 11 c0 O d 3 E °m Em E °m En Em Em H 'o w �z em eez o �z e¢n Xcxi r m aya o nU r U U mtZi oc o a, ern_ aE <c r E E c rc m it N E,2 - >9 0 0o P° P° o0o ryn m° m° II L p~ r~ m r m iEa ¢ c y °o � E c o c o o m U c K K K C W m m ¢ o h s n a a T o oa+ h O E w a° m N o _O O yj N U Z O 1G p p C O w w i9 VJ N N ; i c 3 N 9 y N H m P N 1L 2 LL d LL # O °' c c c c c 3 qao E E E E E E w m N w z ao ao lu m ry (1 A A A W W L L L L L N P N n o v o v u v v v v W v v v a N 2' a a a a a 2 W W W W c c C - d= N N N N N N w w w m m 6 6 d W 1p �mn c v � c `cn i W r r P II O n O o a o G v � o II C v t `u t N U O P 0 c N C d m W u E n U ~O T OI y N G wL' U a� m w E W t� a oo N om E `m a COy on W N> ado K 0 ro rn �ap�p a ht W NU L L= 1 U oUC C9 cNO1 _ A 0 nW mu U -u vN °o9 of a "n3? m A n 0 mnlo: ommc n w W W O A v¢� m N�z U QZn a a E 2"c 0- wCD vx �vmia vs P OF m w N "°+ y A v c r L` 0 a n o o ° n E 'a m _O m L LL o °o C N o W C d E II Q t W W « � y U o v a > _E- � � o W � L U o � c E < °W � Ew N � o y N m �o I- o In n h t aN O O C � a rc ¢r 4 i °o UUo Ut >x a °uaa q U Y ntj .0 dN o: A A o e mPOa mrry co V m W U W v < 2"u �Wp W >Zv U a a E F'c Ado UO� m�oP mx rN >� 3 uia n¢ m ox y� G n IL W 9 II L 0 0 Y v o � n V ° t UJ `� m °o c yQ m m m W N o C V N II « � N v > E- a �' o N U E t` E � > mW � N � r °o II N t y N O p p n > > T rc z I- o�� 00 l0'2o no �m mm r� ww mm mm o0 0 0 it lir it Ir as mm nn �n P mn P rat- ca o o�, o ❑y o!n o� ."o � Y o A x C x IC ItL GN �`y V °N Cj 'G I3 m N N m N N In I N C m m r N Cd t d'(7 K� 4'r ll� KN CII 3i NN f C� 33 0 °O PO � 0 ¢ W 5 11 c0 O d 3 E °m Em E °m En Em Em H 'o w �z em eez o �z e¢n Xcxi r m aya o nU r U U mtZi oc o a, ern_ aE <c r E E c rc m it N E,2 - >9 0 0o P° P° o0o ryn m° m° II L p~ r~ m r m iEa ¢ c y °o � E c o c o o m U c K K K C W m m ¢ o h s n a a T o oa+ h O E w a° m N o _O O yj N U Z O 1G p p C O w w i9 VJ N N ; i c 3 N 9 y N H m P N 1L 2 LL d LL # O °' c c c c c 3 qao E E E E E E w m N w z ao ao lu m ry (1 A A A W W L L L L L N P N n o v o v u v v v v W v v v a N 2' a a a a a 2 W W W W c c C - d= N N N N N N w w w m m 6 6 d L L oma 00 m 0 e � m.. `ca W m } 0 t N � 1 S O 2 a� y C O d U E� R a m m m � N ° N yl �a �ssm� N[ II �QO v m C � N +� � C �a W d } 0 N � N � ti = O O L 2 m m a_ C N G O m U a� R a A d N m N O a` 0 a � t R IL > o 0 y II W � � Z N L N o Ic N � C °o m N E 1� L m m u o 0 6 N a > E. N c w � U b o he R ]� E E fq E w N ° m n N i Fo y v aN 0 0 O � T K Kr 'C t °• d a m U U d N N x c m 0o " 2< x U m z. Q n U `m °anE Fu qMm m� MA >` m^. Ol m N Q N m L nmr� am N1� NI�N J� N nN m b N F c `o N m ❑ m 6NG mU m3- m° >E U mo °� No mm p N J u r m N n a 16 tl L > o n m o y ❑ n U L N ^ o y n o c w C °o m N d t II II E y u o m � > Eo m w r w L VII o _ m y v u lL om r � > K r °o N � II y S a N 0 0 0 < <a � ¢r U O (7 4 N u x � a m ❑ O m u u S j OI 0 O m �• 0 1° mu �Zu U `mmaaE 2'0 °mN Lrnmm >� mn ur`in v N d E W o � o m 11 > m o J O e 0 0 u n N o Q O `uu n O omm LL pmwm m 3f o C N U ml ®Iv y °EE 0 O O w E » R c QNN E o0 E i3 <j C� N z v @ICS �m O .US N NN[V U N N 46 O 111111 2 � 0 x oOF= ° _-O y m of N J u o r � o E 3 ro _O W III c o O � c ❑ I I G O Q L U > N O N O < o C N m E II c t E m u ° O N A o m a > Eo 'J ro N U 0 N C E o= L m N N o m N m Q � o r° N II N t P y N C L = C O y rc rc� c c m E w' o u 11a > m O J O .d. c y n ¢ O w .S nm m °n r W ❑ N N N o Of = L -n 11 U m m K NOO W £ > m R E o0 E it 3 N � N y m In a ❑ p II 11 II Z N ooh o cc� s. _ .0 U a N U x � O m C m O ¢ y e0 tea �� o m ox mrII N` IE i c c � E w o o y n > w O J ° O N O o ¢ ° V V n O tl �a< m° 0 0 ❑mm � N o La. U m L II II 7 U goo m Eo _ww 2. 3 est R U N N E C ° s N U U y U NNYN] p II II II Z N o = ooh 3 =0 m N n a 16 tl L > o n m o y ❑ n U L N ^ o y n o c w C °o m N d t II II E y u o m � > Eo m w r w L VII o _ m y v u lL om r � > K r °o N � II y S a N 0 0 0 < <a � ¢r U O (7 4 N u x � a m ❑ O m u u S j OI 0 O m �• 0 1° mu �Zu U `mmaaE 2'0 °mN Lrnmm >� mn ur`in v N d E W o � o m 11 > m o J O e 0 0 u n N o Q O `uu n O omm LL pmwm m 3f o C N U ml ®Iv y °EE 0 O O w E » R c QNN E o0 E i3 <j C� N z v @ICS �m O .US N NN[V U N N 46 O 111111 2 � 0 x oOF= ° _-O y m of N J u o r � o E 3 ro _O W III c o O � c ❑ I I G O Q L U > N O N O < o C N m E II c t E m u ° O N A o m a > Eo 'J ro N U 0 N C E o= L m N N o m N m Q � o r° N II N t P y N C L = C O y rc rc� c c m E w' o u 11a > m O J O .d. c y n ¢ O w .S nm m °n r W ❑ N N N o Of = L -n 11 U m m K NOO W £ > m R E o0 E it 3 N � N y m In a ❑ p II 11 II Z N ooh o cc� s. _ .0 U a N U x � O m C m O ¢ y e0 tea �� o m ox mrII N` IE o m N ^ ^ e m LL n n e v o n o n j O O w LL LL m O N w m N 0 p O O 6.L O m 0 II II U w O 60 ri c `m .0 YM8 yN8 u c Q. sE oO mm p N N N O O N i r m O Y0'p -ygNY m'd N r ^ u0 °O "!U E �� n 1° a c -ov O we�M3mami��M dP °m U O=O-E' Swo- c/m�vNiM U � U 9Cm ^Om K O � woc �U as U U N 'off °o, c m v.EEa Un® ¢a` O> m N Q r 9 li M H a a u a E U �a o O a a N 9 O a Z E E w' v ma d� Kv v m u ca i! > ua m NN (] O dM 0. w� E `c 3'x m N cm >y c cv P w> m Y 10 � J O a O m N Y _ U U U L ammlo m O m m omen n II E E o ? ? ? E>> > NOCN10> N ypy� ®p� N m O O P Iln lln ¢ 3 t 3 3 o m 0 0 € E .50a w v 0 m n n m m r L �II O m O � W a m N %II^ t v n mO N O NN1� 0 h Iln OI mMVo I�m¢m mmt �IImO E N d H ¢ L m b t n EoC�N O - C O N m .w II 11 aWV_ rcmali O C `m e U 0 N � 3m y m U� Uf E E ^M m N E F co_ v �a m n m� o`q LL V � c y^ m P N m N m m m^ U �y mvimmn °m mumi.w (jam N�� PN ¢ m N N m^ P M N O m � MmnW"��mm N N N m 0000000000 coyou000000000 �cri6mmmoci6m j n n n n n n m m m m v mmmmmmmmmm W 00 m c c E m W O O O O ci co O e W a 9 O ¢ L n ¢ L N ¢ N O U n..M E2 o `o E J X d0 a° dNN "O O d�QO m�ll e p m�.OnCl�mOmM��m m W O W p`n d p°m °m °w m om "' v PmP�mNm Q Q' L L a II O Q r ° m IN P m n N m n 0 0 I� Q O p Z O p O DNN 10 O IOV Nmm�pmN00m d (0 O ° Lin m^ V 01 UU vE E vo°i u �mm n a �mdd °oq p N o >> '� >> w >>> m8P oPO v E m W Z n w 2__ II t___ CS am « moo c moo c v000 v,- ,omNmammPmom o n» n n» o. n E y w E -- N m E d J Om N�PMmPmmNO T O m e n w m e L l2 E2 m E e L L L IC P@ m N U L rn E 3 L 3 NC mm da N�� F a !n n Zvi vi E °o ,1 N« ao N °Cq�� m mN E E E o r v nm N Fm n�� m n�p1�� f. E E °m O °nUu O ro`uv MUU °o �"! on G^ vim, nv�o�v�<mwn -cm O U °O 'v OO °_ nn + C Nm umi vai i E, o n N �EE M ' oy + � OR Y o ¢.t % m � m N Pm^ �o N m m m O H N a m m O m m m C U a a O N m O Ip �^ II II II m o 11 n II (9 11 n n n m y II a V -0 o in �+ a v a m a W> 3= m c .. m O O O O O O m O N O O O ¢ c 6 m NQQ S 330 a i 33o 0 c 33om = m-v E >`mm m m m m m m m mm € 'o 0 S E '0 5 u m e m E50 ¢ .50a` rc�na ao > w - f !_� }U.1 f )a { )!\ # \/\ \ \/ \ /� \ \ \ ; !} A R\ � IS w: _ �" §\ \)\ { § {\ 0 k . 1 ` ; § /|° !|! =�. �G!) w \! �\ {) -- !| ;% , _ {J§ / \ \j {! ]! # _ 7| [ - !{ - = 2 !!a!= J R :- `( 2 w i� (§ :/ - - - _° �� ® F- Z B - -_ - §)\ k{ i /@ \) °© )k >w r . S J , ! ! ° �.EE t� - §i\ Im „ Q2 -- .2 § §/§ / ); ]; Appendix B Model P8 Urban Catchment Model, Version 3.4 Startup Case Case Data File Run Date 08/01/13 Case 112289 P87- 31- 20133.p8c FirstDate 01101/74 Precip(m) 627.1 Tide Startup Case LastDate 12/31/94 Rain(in) 527.47 PrecFile Msp5095.pcp Events 1539 Snow(in) 99.66 PartFile nurp50.p8p TotalHrs 183720 TotalYrs 20.96 Case Title Startup Case Case Data File 112289 P8 7- 31- 20133.pflc Path L:1Eigineering 3D4i 12289 Jeurissen ParceNiydrology DesigMP8 Modell Case Notes: Proposed Drainage Storm Data File Msp5095.pcp Particle File nurp50.p8p Air Temp File File Ms05095.tm0 Time Steps Per Hour Minimum triter -Event Time (hrs) Mawmum Continuity Error % Rainfall Breakpoint (inches) Precipitation Scale Factor Air Temp Offset (deg -F) Loops Thru Storm File 4 10 2 0.8 1 0 1 Simulation Dates 6/1/1973 1/1/1974 12/31/1994 c Snowfall Temperature (deg -f) wMelt Temperature (deg -f) wrnelt Coef (irddegF -Day) Freeze Temp (deg-F) nvmelt Abstraction Factor po-Trans. Calibration Factor wing Season Start Month wing Season End Month 32.0 32.0 0.06 32.0 1.00 1.00 5 10 ay Antecedent Rainfall + Runoff (inches) Antecedent Moisture Condition wing Season iGrowing Season AMC -11 AMC -III 1.40 2.10 0.50 1.10 Watershed Data Watershed Name Drainage 1S Drainage 2S Drainage 4S Runoff to Device Infiltration to Device Watershed Area Basin 1P Basin 2P Basin 4P 6.11 9.05 8.34 SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Load Indirectly Connected Impery Fraction 74 74 74 1 1 1 0.15 0.11 0.08 UnSwept Impervious Fraction UnSwept Depression Storage (inches) UnSwept Imperv. Runoff Coefficient UnSwept Scale Factor for Particle Loads 0.22 0.17 0.1 0.02 0.02 0.02 1 1 1 1 1 1 Swept Impervious Fraction Swept Depression Storage (inches) Swept Imperv. Runoff Coefficient Swept Scale Factor for Particle Loads Sweeping Frequency Sweeping Efficiency Sweeping Start Date (MMDD) Sweeping Stop Date (MMDD) 0 0 0 0.02 0.02 0.02 1 1 1 1 1 1 0 0.5 0.5 1 1 1 101 101 101 1231 1231 1231 Device Data Device Name Basin 1P Basin 2P Basin 4P Device Type Infiltration Outlet Normal Outlet Spillway Outlet POND POND POND Particle Removal Scale Factor Bottom Elevation (ft) Bottom Area (acres) Permanent Pool Area (acres) Permanent Pool Volume (ac-ft) Penn Pool Infilt Rate (inthr) Flood Pool Area (acres) Flood Pool Volume (ao-ft) Flood Pool Infilt Rate (in/hr) Infilt Basin Void Fraction ( %) 1 1 1 0 0 0 0.04 0.08 0.435 0.327 0.422 0.7538 1.37 2.03 3.015 0.05 0.05 0 0.458 0.616 1.2688 2.73 4.61 6.006 0.05 0.05 0 Detention Pond Outlet Parameters Outlet Type Outlet Orifice Diameter (in) Odfice Discharge Coef Outlet Weir Length (ft) Weir Discharge Coef Perforated Riser Height (ft) Number of Holes in Riser Holes Diameter Flood Pool Drain Time (hrs) WEIR WEIR ORIFICE 12 0.6 0.25 0.25 3.3 3.3 Swale Parameters Length of Flow Path (ft) Slope of Flow Path % Bottom Width (ft) Side Slope (ft- vtft -h) Ma)dmum Depth of Flow (it) Mannings n Constant Hydraulic Model Pipe, Splitter, Aquifer Parameter Hydraulic Res. Time (hrs) Particle Data nurp50.p8p Particle File Particle Class PD% P10% P30% P50% P80% Filtration Efficiency ( %) Settling Velocity (fdhr) First Order Decay Rate (1 1day) 2nd Order Decay (1 /day -ppm) 90 100 100 100 100 0 0.03 0.3 1.5 15 0 0 0 0 0 0 0 0 0 0 Impervious Runoff Conc (ppm) Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbsac -day) Particle Removal Rate (11day) Washoff Coefficient Washoff Exponent Sweeper Efficiency 1 0 0 0 0 1 100 100 100 200 0 1 1 1 1 0 1.75 1.75 1.75 3.5 0 0.25 0.25 025 0.25 0 20 20 20 20 0 2 2 2 2 0 0 0 5 15 Quality Component Data TSS I TP I TKN I CU I PB I ZN Water Quality Criteria (ppm) Level 1 Level2 Level 3 5 0.025 2 2 0.02 5 0.1 10 0.05 1 0.0048 0.014 0.0362 0.5 20 0.1 0.5 0.02 0.15 0,38 1 3850 15000 340 180 1600 22500 1000000 0 Content Scale Factor 1 1 1 1 1 1 1 Particle Composition (mg/kg) 0 99000 600000 13600 2000 640000 250000 1000000 3850 15000 340 180 1600 225011 1000000 3850 15000 340 180 1600 22500 1000000 3850 15000 340 180 1600 22500 1000000 0 0 340 180 0 22500 P8 Urban Catchment Model, Version 3.4 Case 112289 P87- 31- 20131p8c FirstDate 01/01/74 Title Startup Case LastDate 12/31/94 PrecFile Msp5095.pcp Events 1539 PartFile nurp50.p8p TotalHrs 183720 Flow -VAd -Mean Concs (ppm) Term = 10 surface outflow Device Type QoMeancfs QVolAcft PO% P10% P30% OVERALL NONE 0.01 113.1 0.98 22.39 17.40 Basin 1P POND 0.00 10.5 1.00 62.42 50.49 Basin 2P POND 0.00 13.2 1.00 72.60 58.73 Basin 4P POND 0.01 89.3 0.97 10.21 7.36 Outflow Loads (lbs) Term = 10 surface outflow Device Type QoMeancfs QVolAcft PO% P10% P30% OVERALL NONE 0.01 113.1 301.04 6882.79 5348.06 Basin 1P POND 0.00 10.5 28.67 1789.60 1447.70 Basin 2P POND 0.00 13.2 36.00 2614.04 2114.67 Basin 4P POND 0.01 89.3 236.37 2479.14 1785.69 Removal Efficiency ( %) Device Type QoMeancfs QVolAcft PO% P10% P30% OVERALL NONE 0.01 113.1 57.94 68.64 75.63 Basin 1P POND 0.00 10.5 80.54 73.26 78.37 Basin 2P POND 0.00 13.2 80.60 69.91 75.66 Basin 4P POND 0.01 89.3 0.00 62.25 72.81 Mass Balance Error ( %) Device Type QoMeancfs QVOIAcft PO% P10% P30% OVERALL NONE 0.01 113.1 0.01 0.00 0.00 Basin 1P POND 0.00 - 10.5 0.00 0.00 0.00 Basin 2P POND 0.00 13.2 _ 0.00 0.00 0.00 Basin 4P POND 0.01 89.3 0.04 0.00 0.00 Run Date 08/01/13 Precip(in) 627.1 Rain(in) 527.47 Snow(in) 99.66 TotalYrs 20.96 P50% P80% TSS TP TKN cu PB ZN 9.96 2.91 52.67 0.29 1.33 0.03 0.01 0.71 31.52 10.10 154.53 0.66 2.77 0.07 0.03 0.87 36.36 11.15 178.84 0.74 3.12 0.07 0.03 0.91 3.50 0.84 21.92 0.18 0.90 0.02 0.01 0.66 P50% P80% TSS TP TKN cu PB ZN 3062.10 895.73 16188.67 88.68 410.02 9.60 3.52 217.14 903.79 289.51 4430.60 18.78 79.32 1.90 0.85 24.98 1309.06 401.29 6439.06 26.81 112.17 2.68 1.23 32.70 849.25 204.93 5319.02 43.09 218.53 5.02 1.43 159.46 P50% P80% TSS TP TKN cu PB ZN 86.05 97.96 85.25 72.02 70.29 78.70 83.05 60.95 86.49 97.84 86.76 79.68 79.79 85.22 86.24 80.36 84.93 97.69 85.17 77.79 78.14 84.07 84.80 80.00 87.07 98.44 83.80 56.23 49.60 64.68 77.44 12.49 P50% P80% TSS TP TKN cu PB ZN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.03 HC 1.43 3.73 4.27 0.74 HC 439.51 106.86 153.88 178.77 HC 83.05 86.24 84.80 77.44 HC 0.00 0.00 0.00 0.00 L Appendix C Ration Method Pipe Design CAMDEN RIDGE PROJECT: 112288 STORM FREQUENCY 10YR DATE: 07 -31 -2013 TYPE OF PIPE VARIES BY: KAW MANNINGS' N 0.013 LOCATION I AREA COEFFICIENT TIME OF CONC. INTENSITY FLOW D =CIA PIPE DESIGN I PROFILE CATCHMENT/ FROM TO INC. CUM. INC INC CUM. TC TC CUM. INC. CUM. INC CUM. DIAM. GRADE MAX FULL LENGTH RIM INVERT INVERT JUMP BUILD COVER BUILD COVER DESIGN COMMENTS REACH STRUCTURE STRUCTURE A A C CA CA (LAND) (PIPE) TC I I Q Q (IN) % Q V (FT.) ELEV. (IN) (OUT) (OUT) (IN) (IN) (OUT) (OUT) FLOW TO POND 7 121 CB -121 CBMH -111 0.742 0.742 0.48 0.35 0.353 10.00 0.16 10.00 5.75 5.75 2.03 2.03 15.00 0.40 4.08 3.30 30.55 887.95 884.45 884.33 3.60 I 2.06 6.28 4.84 BUILD IN<3.5' 115 CB -1l5 114A 0.475 0.676 0.22 0.71 0.105 10.00 0.08 10.00 5.75 6.76 0.61 0.61 8.00 29.50 6.66 18.59 68.53 921.80 978.78 898.54 3.04 2.19 6.66 6.80 BUILD IN-3.F 114A 114A CBMH -114 0.251 0.726 0.00 0.00 0.105 10.00 0.05 10.06 5.75 6.74 0.00 0.60 8.00 2.00 1.70 4.84 15.00 904.00 898.66 898.24 8.48 4.60 3.79 2.93 DESIGN ACCEPTABLE 114 CBMH -114 CBMH -113 0.338 1.064 0.42 0.14 0.277 10.00 0.08 10.11 5.75 5.73 0.82 1.42 15.00 1.50 7.90 6.39 30.45 902.03 897.66 897.20 4.37 2.93 4.39 2.96 DESIGN ACCEPTABLE 113 CBMH -113 CBMH -112 0.483 1.526 0.71 0.33 0.574 10.00 0.04 10.19 5.75 6.72 1.86 3.28 15.00 8.00 18.25 14.75 33.33 901.59 897.20 894.54 4.39 2.96 4.43 3.00 DESIGN ACCEPTABLE 112 CBMH -112 CBMH -111 0.034 1.561 0.85 0.03 0.603 10.00 0.14 10.23 5.75 5.71 0.17 3.44 15.00 8.00 18.25 14.75 127.55 898.97 894.54 BBZ33 4.43 3.00 6.28 4.84 DESIGN ACCEPTABLE 111 CBMH -111 CBMH -103 0.166 2.468 0.59 0.10 1.054 10.00 0.32 10.37 5.75 5.68 0.57 5.99 15.00 1.00 6.46 5.21 99.36 890.61 884.33 883.34 6.80 6.28 6.86 4.07 2.63 DESIGN ACCEPTABLE 106 CB -106 CBMH -103 1.046 1.046 0.59 0.62 0.616 10.00 1.18 10.00 5.75 5.75 3.64 3.54 15.00 0.35 3.82 3.08 218.51 880.88 877.30 876.54 3.58 2.14 10.87 9.43 DESIGN ACCEPTABLE 105 CB -105 CBMH -104 0.393 0.383 0.62 0.26 0.244 10.00 0.14 10.00 5.75 5.75 1.41 1.41 15.00 0.50 4.56 3.69 30.01 888.39 877.52 877.37 10.87 9.44 11.01 9.57 DESIGN ACCEPTABLE 104 CBMH -104 CBMH -103 0.400 0.793 0.69 0.27 0.519 10.00 0.10 10.14 5.75 5.73 1.68 2.97 15.00 1.90 8.88 7.19 43.73 888.37 877.37 878.54 11.01 9.57 10.87 9.43 DESIGN ACCEPTABLE 103 CBMH -103 CBMH -102 0.189 4.178 0.63 0.11 2.298 10.00 0.09 11.18 5.75 5.53 0.87 12,70 27.00 0.65 12.77 5.27 29.05 887Al 876.04 875.86 11.37 9.43 11.53 459 DESIGN ACCEPTABLE 102 CBMH -102 MH -101 0.382 4.858 0.84 0.25 2.542 10.00 0,29 11.27 5.75 5.62 1.42 16.02 21.00 1.30 18.07 7.45 129.05 887.38 875.86 874.17 5.20 11.53 9.59 4.17 2.24 DESIGN ACCEPTABLE 101 MH -101 FES-100 0.000 4.858 0.00 0.00 2.642 10.00 0.15 11.56 5.75 5.46 0.00 13.89 24.00 0.50 78.00 S.Ob 44.22 878.34 888,72 888.50 9.62 7,44 DESIGN ACCEPTABLE 213A CBMH -213 0.000 0,461 0.00 0.00 0,102 10.00 0.36 10.13 5.75 5.73 0.00 3W TO POND2 0.59 WESTS 6.00 0.50 0.85 2.42 J 50.00 899.50 891.69 1 891.44 7.81 6.96 4.80 213A 3.94 DESIGN ACCEPTABLE 218 CB -216 NH -211 1.026 1.026 0.43 0.45 0.446 10.00 0.26 10.00 5.75 5.75 2.56 2.56 15.00 0.30 3.53 2.86 45.34 866.07 882.30 882.16 3.77 2.34 5.70 4.26 DESIGN ACCEPTABLE 215 CB -215 213A 0.461 0.461 0.22 0.10 0.102 10.00 0.13 10.00 5.75 5.75 0.69 0.59 8.00 19.00 5.26 14.92 113.28 919.00 913.21 891.69 5.79 4.93 7.81 6.96 DESIGN ACCEPTABLE 214 CB -214 CBMH -213 0.446 0."11 0.22 0.10 0.099 10.00 0.09 10.00 5.75 5.75 0.57 0.67 15.00 0.50 4.56 3.69 19.19 895.00 890.95 890.86 6,06 2.61 4.38 3.04 DESIGN ACCEPTABLE 213 CBMH -213 C13MH -212 0.582 1.489 0.38 0.22 0.423 10.00 0.13 10.47 5.75 5.66 1.28 2.39 15.00 0.50 4.56 3.69 29.00 896.24 890.86 890.71 5.38 3.94 5.53 4.09 DESIGN ACCEPTABLE 212 CBMH -212 MH -211 0.568 2.057 0.64 0.36 0.785 10.00 0.21 10.60 5.75 5.64 2.09 4.43 15.00 5.60 15.27 12.34 152.70 896.24 890.71 882.16 5.53 4.09 5.70 4.26 DESIGN ACCEPTABLE 211 MH -211 MH -202 0,876 3.958 0.66 0.58 1.808 10.00 0.12 10.81 5.75 5.60 3.32 10.13 15.00 2.50 10.20 8.24 60.45 887.86 882.16 880.65 5.70 6.26 6.42 4.99 DESIGN ACCEPTABLE 204 CB -204 CBMH -203 0.926 0.926 0.59 0.55 0.649 10.00 0.17 10.00 575 5.75 3.16 3.16 15.00 0.30 3.63 2.86 29.00 884.63 881.18 881.09 .45 2.01 3.64 2.10 BUILD IN<3.6' 203 CBMH -203 MH -202 0.687 1.613 0.71 0.48 1,036 10.00 0.60 10.17 5.75 8,72 2.79 5.92 18.00 0.35 6.21 3.49 126.02 884.63 880.84 680.40 f3.79 2,10 6.67 4.99 DESIGN ACCEPTABLE 202 MH -202 MH -201 0.000 6.571 0.00 0.00 2.842 10.00 0.03 10.93 5.75 5.58 0.00 16.86 24.00 0.50 78.00 6.05 8.00 887.07 879.90 879.86 .17 4.99 4.62 2.43 DESIGN ACCEPTABLE 201 MH -201 FE-200 0.000 5571 0.00 0.00 2.842 10.00 0.04 10.96 5.75 5.57 0.00 15.84 24.00 0.50 16.00 405 12.00 884.48 879.86 679.80 .62 2.43 DESIGN ACCEPTASLE - = DW TO POND 2 EAST 8 243 CB -243 CBMH -242 0.536 0.536 0.69 0.37 0.371 10,00 0.19 1 10.00 5.75 5,76 2.13 2.13 15.00 0.50 4.56 3.69 29.41 890.85 883.43 883.28 7.42 5.98 7.53 6.09 DESIGN ACCEPTABLE 242 CBMH -242 CBMH -241 0.418 0.956 0.73 0.31 0.677 10.00 0.57 10.13 5.75 5.73 1.76 3,88 15.00 0.65 5.20 4.20 144.86 890.81 883.28 882.34 7.63 6.09 7.27 5.84 DESIGN ACCEPTABLE 241 CBMH -241 CBMH -222 0.313 1.267 0.60 0.19 0.866 70.00 0.17 10.71 5.75 5.62 1.09 4.87 15.00 0.65 5.20 4.20 43.18 889.61 882.34 882.06 7.27 5.84 7.32 5.88 DESIGN ACCEPTABLE 232 CB -232 CBMH -231 0.564 0.866 0.66 0.37 0.370 10.00 0.74 10.00 5.75 5.75 2.13 2.13 15.00 0.35 3.82 3.08 137.12 887.04 883.62 883.06 3.52 2.08 8.04 6.60 DESIGN ACCEPTABLE 231 CBMH -231 CBMH -222 0.000 0.564 0.00 0.00 0.370 10.00 0.69 10.74 5.75 5.61 0.00 2.08 15.00 0.50 4.56 3.69 196.70 891.08 883.04 882.06 8.04 6.60 7.32 5.69 DESIGN ACCEPTABLE 223 CB -223 CBMH -222 0.842 0.842 0.72 0.61 0.607 10.00 0.13 10.00 5.75 5.75 3.49 3.49 15.00 0.50 4.56 3.89 29.31 889.39 882.20 882.06 7.18 5.74 7.32 6.89 DESIGN ACCEPTABLE 222 CBMH -222 MH -221 0.485 3.159 0.68 0.33 2.173 10.00 0.02 11.63 5.75 5.45 1.90 11.85 21.00 1.00 15.84 6.53 6.75 88438 881.56 881.49 7.82 5.89 8.62 6.58 DESIGN ACCEPTABLE 221 MH -221 .. FES -220 1.026 4.185 0.43 0.45 2.618 10.00 0.38 11.65 5.75 5.45 2.56 14.27 21.00 1.00 15.84 6.53 149.09 890.01 881.49 880.00 8.52 6.58 DESIGN ACCEPTABLE " .. _ _..... CBMH -301 0.337 0.337 0.44 0.15 0.148 10.00 0.38 FLOW TO MNDOT 10.00 5.75 5.75 0.85 0.85 212 15.00 1.00 6.45 5.21 122.82 881.30 877.71 876.48 5.00 3.59 2.15 4.21 2.78 DESIGN ACCEPTABLE 311 CB -311 303 CB -303 CBMH -302 0.345 0.346 0.44 0.16 0.150 10.00 0.38 10.00 5.75 5.75 0.88 0.86 15.00 1.00 6.46 1 5.21 113.68 1 880.59 877.05 876.91 3.54 2.10 5.17 3.76 DESIGN ACCEPTABLE 302 CBMH -302 CBMH -301 0.183 0.528 0.49 0.09 0.241 10.00 1 0.30 1 10.36 5.75 5.68 0.52 1.37 15.00 1.00 1 6.45 5.21 93.40 881.09 875.91 874.98 3.50 5.17 3.74 5.71 4.28 DESIGN ACCEPTABLE 301 CBMH -301 FES -300 0.213 1.078 0.34 0.07 0.461 10.00 1 0.28 1 10.86 5.75 5.63 0.41 2.59 1 15.00 1.00 1 6.45 6.21 88.00 880.69 871.48 870.60 9.21 7.78 DESIGN ACCEPTABLE - CB -411 CBMH -405 1.518 1.518 0.31 0.48 0.477 10.00 0.09 10.00 FLOW TO POND 4 5.75 5.75 2.74 2.74 15.00 1.00 6.45 5.21 29.00 889.05 885.48 865.19 3.56 2.13 3.85 2.42 DESIGN ACCEPTABLE 411 408 CB -408 CBMH -407 0.899 0.899 0.36 0.32 0.321 10.00 0,73 10A0 5.75 5.75 1.86 1.85 15.00 0.50 4.56 3.69 29.06 902.34 898.33 898.18 4.01 2.57 3.76 2.32 DESIGN ACCEPTABLE 407 C13MH -007 CBMH -406 0.584 1.683 0.48 0.28 0.603 10.00 0.23 10.13 5.75 5.73 1.62 3.45 15.00 0.50 4.56 3.69 49.99 901.94 898.18 897.93 3.76 2.32 4.61 3.17 DESIGN ACCEPTABLE 406 CBMH -406 CBMH -405 0.062 1.645 0.75 0.05 0.648 10.00 0.26 10.36 5.75 6.68 0.27 3.89 15.00 6.30 16.20 13.09 202.20 902.54 897.93 685.19 4.61 3.17 3.85 2.42 DESIGN ACCEPTABLE 405 CBMH -405 C13MH -401 0.139 3.202 0.75 0.10 1.231 10.00 0.20 10.61 5.75 5.64 0.60 6.94 15.00 3.45 11.99 9.68 117.49 889.05 885.19 881.14 10.00 3.85 2.62 4.51 3.07 DESIGN ACCEPTABLE 404 CB-404 C13MH -403 2111 2.711 0.27 0.73 0.730 10.00 0.03 10.00 5.75 5.75 4.20 4.20 15.00 0.80 5.77 4.66 7.96 885.38 881.87 881.81 3.60 2.06 3.55 2.17 DESIGN ACCEPTABLE 403 CBMH -403 CBMH -402 1.130 3.861 0.26 0.30 1.029 10.00 0.09 10.03 5.75 5.75 1.72 5.91 15.00 1.00 6.45 5.21 28.00 885.36 881.81 881.62 3.65 2.11 3,84 2.40 DESIGN ACCEPTABLE 402 CBMH402 CBMH401 0.740 4.581 0.72 0.63 1.558 10.00 0.15 10.12 575 5.73 3.05 493 18.00 0.80 9.39 5.27 47.51 885.36 881.27 880.89 10.00 4.09 2.40 4.76 3.07 DESIGN ACCEPTABLE 401 CBMH -001 FES -400 0.082 7.886 0,76 0.06 2.852 10.00 0.20 10.82 5.75 5.60 0.36 15.97 24.00 0.60 17.53 6.53 85.19 885.65 870.39 870.00 15.26 13.07 DESIGN ACCEPTABLE Appendix D Supporting Documents SY1.9' RECTANGO B.Tc,: 1. Crates to De made n (2) p1. Z ui m.. sheen ae not - ?Peed- galwniud Structure Requires (2) - Piece Grate Per Drilling S Oba. y4 qoe See Decal B -B ..TOP =8 PRECAST CONC. WEIR e S- Decal A -A 69'0 O.D. 1 /4'xl' Flat Step. Place hey. Clow 111 Rip RI around structure. w B O 4� nc wal my (4) 1 " h13 IIXC Hea Head Ste With i Nu tl Bolh Y! Nuh no WoMera 1/C steel Plate THIM- 871.20 DETAIL A -A a is HM7 18" CL5 RCP 5" CL5 RC O U,� 0.5% NOSES. PourcG CancrN. DETAIL B —B 1. Standard pipe join. required w halt Inlet a outlet pipes. 2. re met three pmh use tw tie halt coalmen par pmt. POND OUTLET CONTROL STRUCTURE CS -1 h= I. auto to be made n (2) pews 2 All metal of be NoI,d - oameed see oMOY A -A 69'0 O.D. rt Welr 1 /4'rl" net Sled. Place 4-cy. pass III Rip R, —no almcWm. YX30" RECTANW Structure Requlrn (2) - Piece date Par Draemq See p /qn see Dean B -B .V TOP =B 30" PRECAST CONIC. WEIR e O 4" e.e. eaM vaY 1Heod UNC -13 L4 Were[ is Sd Bdh War Nu h and Mtahm t/4' Sletl %a!e --:!� 9' HIM- 883.60 DETAIL A -A inlet fiD' m —I8' CL.5 RCP 15" O C L0.5 5 $ R C M O 0.0$ I4ff£ 4.00 Poured Concrete I. Standard pipe bedding ma,wed an both inlet k outlet pow. E T. last three joint. llo am be tom raMmen ps pnt. POND OUTLET CONTROL STRUCTURE STRUC�RE CS -2 DETAIL B —B EL 100.75 1 \ 0.50 EL 100.25 _ f 2.0 EL 98.25 �' \ EL 98.0 0.25 0.75 EL 97.25 6" HOPE CORRUGATED DRAIN TILE _ WITHOUT SOCK SAND INSTALLED IN 2 LIFTS OF 1 FOOT. IRON TILLED IN USING A ROTARY TYPE TILLER BETWEEN LIFTS. WMO REPRESENTATIVE MUST BE PRESENT WHEN IRON FILINGS ARE TILLED IN. (1 " -12 °) WASHED T -0" CLEAN SAND MIXED WITH IRON FILINGS 5% BY WEIGHT MINIMUM 3" OF 1/4 —INCH (TYP "BUCKSHOT" WASHED ROCK ' ADD ROCK BELOW TILE TO RECEIVE VOLUME CREDIT ALSO s � L-- ------ ------ °------------- -----� CALCULATIONS TO MEET RULES VOLUME: NO VOLUME CREDIT GIVEN FOR IESF UNLESS STORAGE IS PROVIDED BELOW TILE. ( SEE FILTRATION TRENCH DETAIL) WATER QUALITY: IRON FILING FILTRATION PROVIDES 90% REMOVAL TP. DRAWDOWN: 48 HOUR DRAWDOWN OF BMPS IS REQUIRED. TO DETERMINE LENGTH OF TRENCH NEEDED, USE FILTRATION RATE OF 50 CF PER LINEAR FOOT OF T WIDE TRENCH, OR 17 CF PER SF OF TRENCH. IRON FILINGS: 1. AMOUNT OF FILINGS CAN BE DETERMINED BY CALCULATING TOTAL SAND NEEDED TO FILL THE TRENCH, AND MULTIPLYING BY 5 %. 2. IRON FILINGS MUST BE MIXED EVENLY INTO SAND. 3. IRON FILINGS MUST BE CLEANED AND WASHED. PROVIDE SUPPLIER INFORMATION TO WMO. NO OIL OR GREASE ALLOWED. DATE: MARCH 2013 MINNESOTA FILTER ( IRON FILING) TRENCH DETAIL USDA United States Department of Agriculture o N RCS Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Carver County, Minnesota Jeurissen Parcel May 3, 2013 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplementthis information in some cases. Examples include soil quality assessments (http: / /soils.usda.gov /sqi /) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center ( http: // offices .sc.egov.usda.gov /locator /app? agency =nres) or your NRCS State Soil Scientist (http: / /soils.usda.gov /contacti state_offices /). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey orwet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means L for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720 -2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250 -9410 or call (800) 795 -3272 (voice) or (202) 720 -6382 (TDD). USDA is an equal opportunity provider and employer. Contents Preface..................................................................................... ............................... 2 How Soil Surveys Are Made .................................................... ..............................5 SoilMap .................................................................................... ..............................7 SoilMap .................................................................................. ..............................8 Legend.................................................................................... ..............................9 MapUnit Legend ................................................................... .............................10 Map Unit Descriptions ........................................................... .............................10 Carver County, Minnesota ................................................. .............................13 CS— Canisteo silty clay loam, depressional ................... .............................13 GL— Glencoe clay loam ................................................. .............................14 HM—Hamel loam ........................................................... .............................15 KB— Kilkenny- Lester loams, 2 to 6 percent slopes ........ .............................16 KB2— Lester - Kilkenny loams, 2 to 6 percent slopes, eroded ......................17 KC— Lester- Kilkenny loams, 6 to 12 percent slopes ...... .............................19 KC2— Lester - Kilkenny loams, 6 to 12 percent slopes, eroded ....................20 KD2— Lester - Kilkenny loams, 12 to 18 percent slopes, eroded ..................22 KE2— Lester - Kilkenny loams, 18 to 25 percent slopes, eroded ..................23 KF— Lester - Kilkenny foams, 25 to 40 percent slopes .... .............................25 MK— Houghton and Muskego soils ................................ .............................26 ND3— Lester- Kilkenny clay loams, 12 to 18 percent slopes, severely eroded...................................................................... .............................27 NE3— Lester - Kilkenny clay loams, 18 to 25 percent slopes, severely eroded...................................................................... .............................29 PM— Klossner muck ....................................................... .............................30 TB— Terril loam, 0 to 6 percent slopes ........................... .............................31 References............................................................................... .............................33 GI How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil- vegetation - landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the Custom Soil Resource Report individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and /or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil - landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil - landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field- observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields underdefined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. L Soil Ma The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. E6 6C. b 4t 0S." 006 009 00E 09t 0 aaj OYZ 09t 09 06 0 3 vataW N 'WaJS LR x ,S'9) Vis V uo patuud p O19 >a ahS deW dew pos jlodaa aojnosaa tos wojsn3 „EY,6Y.YY Et as." B \ t } } a. «a,x + <,e * ¥■,x- *e:\�\ �;;@@@;m,)� ,| __ 2 ` �- -- � ° - «° � }k§+ | c0 2. 0,0 m` 0,U- ; v §( !!\& a i0 �9a ! ( § > m =§ 3* 0a w ( \ -- m - f} k- \ }! 7 -)\[ - :� / } ;z/ \ k #0R 7c� \ ■ _\ m » ) 23 �� (�\ - \ 2 }!\\ \k /{G ) (( ® \f ;B ± %9 |2 %■_ ` \30 } �( \ \ \ k 02 \( - § ;! | ® o , } §» _ - ! @ z 9 m0 k _ ,$| § \2 si0 . §k§ < ( ) B \ t } } Custom Soil Resource Report Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. L 12 Custom Soil Resource Report Carver County, Minnesota CS— Canisteo silty clay loam, depressional Map Unit Setting Elevation: 700 to 1,900 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Canisteo, depressional, and similar soils: 85 percent Minor components: 15 percent Description of Canisteo, Depressional Setting Landform: Depressions on moraines Down -slope shape: Concave Across -slope shape: Concave Parent material: Till Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in /hr) Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.7 inches) Interpretive groups Farmland classification: Prime farmland if drained Land capability (nonirrigated): 3w Hydrologic Soil Group: B/D Typical profile 0 to 18 inches: Silty clay loam 18 to 39 inches: Loam 39 to 80 inches: Loam Minor Components Cordova Percent of map unit., 9 percent Landform: Depressions Glencoe Percent of map unit: 6 percent Landform: Depressions, drainageways 13 Custom Soil Resource Report GL— Glencoe clay loam Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period., 155 to 200 days Map Unit Composition Glencoe and similar soils: 85 percent Minor components: 15 percent Description of Glencoe Setting Landform: Depressions on moraines Down -slope shape: Concave Across -slope shape: Concave Parent material: Till Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 1.98 in /hr) Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent Calcium carbonate, maximum content., 20 percent Gypsum, maximum content. 1 percent Available watercapacity High (about 11.2 inches) Interpretive groups Farmland classification: Prime farmland if drained Land capability (nonirrigated): 3w Hydrologic Soil Group: B/D Typical profile 0 to 10 inches: Clay loam 10 to 35 inches: Clay loam 35 to 48 inches: Loam 48 to 60 inches: Loam Minor Components Canisteo Percent of map unit., 10 percent Landform: Swales 14 Custom Soil Resource Report Okoboji Percent of map unit: 5 percent Landform: Swales HM —Hamel loam Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Hamel and similar soils: 90 percent Minor components: 10 percent Description of Hamel Setting Landform: Drainageways on moraines Down -slope shape: Concave Across -slope shape: Linear Parent material. Till Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Poorly drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 6 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity. High (about 11.6 inches) Interpretive groups Farmland classification: Prime farmland if drained Land capability (nonirrigated): 2w Hydrologic Soil Group: C/D Typical profile 0 to 24 inches: Loam 24 to 46 inches: Clay loam 46 to 60 inches: Loam Minor Components Glencoe Percent of map unit. 5 percent 15 Custom Soil Resource Report Landform: Depressions, drainageways Terril Percent of map unit: 5 percent KB— Kilkenny- Lester loams, 2 to 6 percent slopes Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Kilkenny and similar soils: 60 percent Lester and similar soils: 40 percent Description of Kilkenny Setting Landform: Moraines Landform position (two- dimensional): Backslope Down -slope shape: Linear Across -slope shape: Linear Parent material: Till Properties and qualities Slope: 2 to 6 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 20 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content., 1 percent Available water capacity: High (about 10.5 inches) Interpretive groups Farmland classification: All areas are prime farmland Land capability (nonirrigated): 2e Hydrologic Soil Group: C/D Typical profile 0 to 11 inches: Loam 11 to 35 inches: Clay loam 35 to 80 inches: Loam 16 Custom Soil Resource Report Description of Lester Setting Landform: Moraines Landform position (two- dimensional): Backslope Down -slope shape: Linear Across -slope shape: Linear Parent material. Till Properties and qualities Slope: 2 to 5 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: About 43 to 47 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.5 inches) Interpretive groups Farmland classification: All areas are prime farmland Land capability (nonirrigated): 2e Hydrologic Soil Group: B Typical profile 0 to 8 inches: Loam 8 to 35 inches: Clay loam 35 to 40 inches: Clay loam 40 to 60 inches: Loam KB2— Lester - Kilkenny loams, 2 to 6 percent slopes, eroded Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Lester, eroded, and similar soils: 60 percent Kilkenny, eroded, and similar soils: 40 percent Description of Lester, Eroded Setting Landform: Moraines Landform position (two- dimensional): Backslope 17 Custom Soil Resource Report Down -slope shape: Linear Across -slope shape: Linear Parent materiat Till Properties and qualities Slope: 2 to 5 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: About 43 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content. 25 percent Gypsum, maximum content. 1 percent Available water capacity: High (about 10.5 inches) Interpretive groups Farmland classification: All areas are prime farmland Land capability (nonirrigated): 2e Hydrologic Soil Group: B Typical profile 0 to 8 inches: Loam 8 to 35 inches: Clay loam 35 to 58 inches: Loam 58 to 80 inches: Loam Description of Kilkenny, Eroded Setting Landform: Moraines Landform position (two- dimensional): Backslope Down -slope shape: Linear Across -slope shape: Linear Parent material: Till Properties and qualities Slope: 2 to 6 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 20 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content. 20 percent Gypsum, maximum content: 1 percent Available water capacity. High (about 10.5 inches) Interpretive groups Farmland classification: All areas are prime farmland Land capability (nonirrigated): 2e Hydrologic Soil Group: C/D Typical profile 0 to 11 inches: Loam 11 to 35 inches: Clay loam IE3 Custom Soil Resource Report 35 to 60 inches: Loam KC— Lester - Kilkenny loams, 6 to 12 percent slopes Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Lester and similar soils: 60 percent Kilkenny and similar soils: 40 percent Description of Lester Setting Landform: Moraines Landform position (two- dimensional): Backslope Down -slope shape: Linear Across -slope shape: Linear Parent material: Till Properties and qualities Slope: 6 to 12 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency ofponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.5 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability (nonirrigated): 3e Hydrologic Soil Group: B Typical profile 0 to 7 inches: Loam 7 to 38 inches: Clay loam 38 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny Setting Landform: Moraines 19 Custom Soil Resource Report Landform position (two- dimensional): Backslope Down -slope shape: Linear Across -slope shape: Linear Parent material: Till Properties and qualities Slope: 6 to 12 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.4 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability (nonirrigated): 3e Hydrologic Soil Group: C Typical profile 0 to 9 inches: Loam 9 to 53 inches: Clay loam 53 to 80 inches: Loam KC2— Lester - Kilkenny loams, 6 to 12 percent slopes, eroded Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Lester, eroded, and similar soils: 60 percent Kilkenny, eroded, and similar soils: 40 percent Description of Lester, Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 6 to 12 percent 20 Custom Soil Resource Report Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.5 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability ( nonirrigated): 3e Hydrologic Soil Group: B Typical profile 0 to 7 inches: Loam 7 to 38 inches: Clay loam 38 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny, Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 6 to 12 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity. High (about 10.4 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability (nonirrigated): 3e Hydrologic Soil Group: C Typical profile 0 to 9 inches: Loam 9 to 53 inches: Clay loam 53 to 80 inches: Loam 21 Custom Soil Resource Report KD2— Lester - Kilkenny loams, 12 to 18 percent slopes, eroded Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period., 155 to 200 days Map Unit Composition Lester, eroded, and similar soils., 60 percent Kilkenny, eroded, and similar soils: 40 percent Description of Lester, Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 12 to 18 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content. 1 percent Available water capacity: High (about 10.5 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 4e Hydrologic Soil Group: B Typical profile 0 to 7 inches: Loam 7 to 38 inches: Clay loam 38 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny, Eroded Setting Landform: Moraines LLandform position (two- dimensional): Shoulder It% Custom Soil Resource Report Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 12 to 18 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.4 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 4e Hydrologic Soil Group: C Typical profile 0 to 9 inches: Loam 9 to 53 inches: Clay loam 53 to 80 inches: Loam KE2— Lester - Kilkenny loams, 18 to 25 percent slopes, eroded Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period. 155 to 200 days Map Unit Composition Lester, eroded, and similar soils: 60 percent Kilkenny, eroded, and similar soils: 40 percent Description of Lester, Eroded Setting Landform: Moraines Landform position (two - dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material. Till Properties and qualities Slope: 18 to 25 percent Depth to restrictive feature: More than 80 inches 23 Custom Soil Resource Report Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content. 25 percent Gypsum, maximum content: 1 percent Available watercapacity: High (about 10.4 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonimigated): 6e Hydrologic Soil Group: B Typical profile 0 to 5 inches: Loam 5 to 34 inches: Clay loam 34 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny, Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material., Till Properties and qualities Slope: 18 to 25 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.4 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 6e Hydrologic Soil Group: C Typical profile 0 to 7 inches: Loam 7 to 31 inches: Clay loam 31 to 80 inches: Loam 24 Custom Soil Resource Report KF— Lester - Kilkenny loams, 25 to 40 percent slopes Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Lester and similar soils: 60 percent Kilkenny and similar soils: 40 percent Description of Lester Setting Landform: Moraines Landform position (two- dimensional): Backslope Down -slope shape: Linear Across -slope shape: Linear Parent material. Till Properties and qualities Slope: 25 to 40 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.4 inches) Interpretive groups Farmland classification. Not prime farmland Land capability (nonirrigated): 7e Hydrologic Soil Group: B Typical profile 0 to 5 inches: Loam 5 to 34 inches: Clay loam 34 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny Setting Landform: Moraines Landform position (two- dimensional): Backslope 25 Custom Soil Resource Report Down -slope shape: Linear Across -slope shape: Linear Parent material: Till Properties and qualities Slope: 25 to 35 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.4 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 7e Hydrologic Soil Group: C Typical profile 0 to 7 inches: Loam 7 to 31 inches: Clay loam 31 to 80 inches: Loam MK— Houghton and Muskego soils Map Unit Setting Elevation: 600 to 1,400 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Muskego and similar soils: 50 percent Houghton and similar soils: 50 percent Description of Houghton Setting Landform: Depressions on moraines Down -slope shape: Linear Across -slope shape: Linear Parent material: Organic material Properties and qualities Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained 26 Custom Soil Resource Report Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in /hr) Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent Available water capacity: Very high (about 23.9 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability (nonirrigated): 3w Hydrologic Soil Group: A/D Typical profile 0 to 10 inches: Muck 10 to 80 inches: Muck Description of Muskego Setting Landform: Depressions on moraines Down -slope shape: Linear Across -slope shape: Linear Parent material. Organic material over coprogenous earth Properties and qualities Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in /hr) Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent Calcium carbonate, maximum content: 80 percent Available water capacity. Very high (about 19.4 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability (nonirrigated): 4w Hydrologic Soil Group: C/D Typical profile 0 to 9 inches: Muck 9 to 36 inches: Muck 36 to 60 inches: Coprogenous earth ND3— Lester - Kilkenny clay loams, 12 to 18 percent slopes, severely eroded Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches 27 Custom Soil Resource Report Mean annual air temperature: 43 to 50 degrees F Frost -free period. 155 to 200 days Map Unit Composition Lester, severely eroded, and similar soils: 60 percent Kilkenny, severely eroded, and similarsoils: 40 percent Description of Lester, Severely Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 12 to 18 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.2 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 4e Hydrologic Soil Group: B Typical profile 0 to 7 inches: Clay loam 7 to 38 inches: Clay loam 38 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny, Severely Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 12 to 18 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None 28 Custom Soil Resource Report Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity. High (about 10.2 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 4e Hydrologic Soil Group: C Typical profile 0 to 7 inches: Clay loam 7 to 30 inches: Clay loam 30 to 80 inches: Loam NE3— Lester- Kilkenny clay loams, 18 to 25 percent slopes, severely eroded Map Unit Setting Elevation: 700 to 1,600 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days Map Unit Composition Lester, severely eroded, and similar soils: 60 percent Kilkenny, severely eroded, and similar soils: 40 percent Description of Lester, Severely Eroded Setting Landform: Moraines Landform position (two- dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material: Till Properties and qualities Slope: 18 to 25 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.2 inches) 29 Custom Soil Resource Report Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 7e Hydrologic Soil Group: B Typical profile 0 to 5 inches: Clay loam 5 to 34 inches: Clay loam 34 to 60 inches: Loam 60 to 80 inches: Loam Description of Kilkenny, Severely Eroded Setting Landform: Moraines Landform position (two-dimensional): Shoulder Down -slope shape: Convex Across -slope shape: Convex Parent material., Till Properties and qualities Slope: 18 to 25 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in /hr) Depth to water table: About 30 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content. 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 10.2 inches) Interpretive groups Farmland classification: Not prime farmland Land capability (nonirrigated): 6e Hydrologic Soil Group: C Typical profile 0 to 7 inches: Clay loam 7 to 31 inches: Clay loam 31 to 80 inches: Loam PM— Klossner muck Map Unit Setting Elevation: 800 to 1,400 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost -free period: 155 to 200 days 30 Custom Soil Resource Report Map Unit Composition Klossner and similar soils: 85 percent Minor components: 15 percent Description of Klossner Setting Landform: Depressions on moraines Down -slope shape: Linear Across -slope shape: Linear Parent material: Organic material over till Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in /hr) Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: Very high (about 17.7 inches) Interpretive groups Farmland classification: Farmland of statewide importance Land capability (nonirrigated): 3w Hydrologic Soil Group: B/D Typical profile 0 to 26 inches: Muck 26 to 36 inches: Mucky silty clay loam 36 to 48 inches: Silty clay loam 48 to 80 inches. Loam Minor Components Canisteo Percent of map unit: 10 percent Landform: Swales Glencoe Percent of map unit. 5 percent Landform: Depressions, drainageways TB— Terril loam, 0 to 6 percent slopes Map Unit Setting Elevation: 1,100 to 1,450 feet Mean annual precipitation: 23 to 35 inches 31 Custom Soil Resource Report Mean annual air temperature: 43 to 50 degrees F Frost -free period. 155 to 200 days Map Unit Composition Terril and similar soils: 90 percent Minor components: 10 percent Description of Terril Setting Landform: Moraines, stream terraces Landform position (two-dimensional): Footslope Down -slope shape: Concave Across -slope shape: Linear Parent material: Colluvium over till Properties and qualities Slope: 0 to 6 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in /hr) Depth to water table: About 43 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 20 percent Gypsum, maximum content: 1 percent Available water capacity: High (about 11.4 inches) Interpretive groups Farmland classification: All areas are prime farmland Land capability (nonirrigated): 2e Hydrologic Soil Group: B Typical profile 0 to 27 inches: Loam 27 to 40 inches: Loam 40 to 63 inches: Loam 63 to 80 inches: Loam Minor Components Delft Percent of map unit. 10 percent Landform: Drainageways KYa References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487 -00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep -water habitats of the United States. U.S. Fish and Wildlife Service FWS /OBS- 79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y -87 -1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430 -VI. United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. 33 Custom Soil Resource Report United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. 34